
http://txt.couchware.com/medias/jump?hid=2147&cid=381

DZone, Inc. | www.dzone.com

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#145
C

o
n

ti
n

u
o

u
s

D
e

liv
e

ry

CONTENTS INCLUDE:
n	 The Deployment Pipeline
n	 Benefits
n	 Configuration Management
n			Continuous Integration
n	 Testing
n	 Hot Tips and more...

By Paul M. Duvall

Continuous Delivery
Patterns and Antipatterns

in the Software Lifecycle

ABOUT CONTINUOUS DELIVERY

With Continuous Delivery (CD), teams continuously deliver new
versions of software to production by decreasing the cycle time
between an idea and usable software through the automation of
the entire delivery system: build, deployment, test, and release. CD
is enabled through the Deployment Pipeline, which encompasses a
collection of patterns described in this Refcard.

CD is concerned with “…how all the moving parts fit together:
configuration management, automated testing, continuous
integration and deployment, data management, environment
management, and release management.” (1)

THE DEPLOYMENT PIPELINE

The purpose of the deployment pipeline is threefold:

 • Visibility: All aspects of the delivery system - building,
deploying, testing, and releasing – are visible to all team
members promoting collaboration.

 • Feedback: Team members learn of problems as soon as they
occur so that issues are fixed as soon as possible.

 • Continually Deploy: Through a fully automated process, you
can deploy and release any version of the software to any
environment. (1)

In the Deployment Pipeline diagram above, all of the patterns are
shown in context. There are some patterns that span multiple stages
of the pipeline, so I chose the stage where it’s most predominately
used.

 • Empowering Teams: Because the deployment pipeline is a
pull system, testers, developers, operations, and others can
self service the application version into an environment of their
choice.

 • Reducing Errors: Ensuring the correct version, configuration,
database schema, etc. are applied the same way every time
through automation.

 • Lowering Stress: Through push-button releases to production
and Rehearsing Deployments, a release becomes commonplace
without the typical stress.

 • Deployment Flexibility: Instantiate a new environment or
configuration by making a few changes to the automated
delivery system.

 • Practice makes Perfect: Through the deployment pipeline, the
final deployment into production is being rehearsed every single
time the software is deployed to any target environments. (1)

brought to you by...

 BENEFITS

http://txt.couchware.com/medias/jump?hid=2147&cid=381

2 Continuous Delivery: Patterns and Antipatterns in the Software Life Cycle

DZone, Inc. | www.dzone.com

CONFIGURATION MANAGEMENT

Configuration Management is “the process by which all artifacts
relevant to your project, and the relationships between them, are
stored, retrieved, uniquely identified, and modified”. (1)

Note: Each pattern is cited with a number in parentheses that

corresponds to the source in the References section.

Configurable Third-Party Software (1)

Pattern Evaluate and use third-party software that can be
easily configured, deployed, and automated.

Anti-patterns Procuring software that cannot be externally
configured. Software without an API or command-
line interface that forces teams to use the GUI only.

Configuration Catalog (1)

Pattern Maintain a catalog of all options for each application,
how to change these options and storage locations for
each application. Automatically create this catalog as
part of the build process.

Anti-patterns Configuration options are not documented. The
catalog of applications and other assets is “tribal
knowledge”.

Mainline (3)

Pattern Minimize merging and keep the number of active code
lines manageable by developing on a mainline.

Anti-patterns Multiple branches per project.

Merge Daily (1)

Pattern Changes committed to the mainline are applied to
each branch on at least a daily basis.

Anti-patterns Merging every iteration once a week or less often
than once a day.

Protected Configuration (5) ,(1)

Pattern Store configuration information in secure remotely
accessible locations such as a database, directory, or
registry.

Anti-patterns Open text passwords and/or single machine or share.

Repository (3) , (1)

Pattern All source files - executable code, configuration, host
environment, and data - are committed to a version-
control repository.

Anti-patterns Some files are checked in, others, such as
environment configuration or data changes, are not.
Binaries – that can be recreated through the build
and deployment process – are checked in.

Short-Lived Branches (1)
Pattern Branches must be short lived – ideally less than a few

days and never more than an iteration.

Anti-patterns Branches that last more than an iteration. Branches by
product feature that live past a release.

Single Command Environment (1)

Pattern Check out the project’s version-control repository
and run a single command to build and deploy the
application to any accessible environment, including
the local development.

Anti-patterns Forcing the developer to define and configure
environment variables. Making the developer install
numerous tools in order for the build/deployment to
work.

Single Path to Production (1)

Pattern Configuration management of the entire system -
source, configuration, environment and data. Any
change can be tied back to a single revision in the
version-control system.

Anti-patterns Parts of system are not versioned. Inability to get back
to a previously configured software system.

 CONTINUOUS INTEGRATION (CI)

Build Threshold (5)
Pattern Fail a build when a project rule is violated – such

as architectural breaches, slow tests, and coding
standard violations.

Anti-patterns Manual code reviews. Learning of code quality
issues later in the development cycle.

Commit Often (6)

Pattern Each team member checks in regularly to trunk - at
least once a day but preferably after each task to
trigger the CI system.

Anti-patterns Source files are committed less frequently than daily
due to the number of changes from the developer.

Continuous Feedback (6)
Pattern Send automated feedback from CI system to all

Cross-Functional Team members.

Anti-patterns Notifications are not sent; notifications are ignored; CI
system spams everyone with information they cannot
use.

Continuous Integration (6)
Pattern Building and testing software with every change

committed to a project’s version control repository.

Anti-patterns Scheduled builds, nightly builds, building
periodically, building exclusively on developer’s
machines, not building at all.

3 Continuous Delivery: Patterns and Antipatterns in the Software Life Cycle

DZone, Inc. | www.dzone.com

Stop the Line (5) , (1) , (4), (12)
Pattern Fix software delivery errors as soon as they occur;

stop the line. No one checks in on a broken build as
the fix becomes the highest priority.

Anti-patterns Builds stay broken for long periods of time,
thus preventing developers from checking out
functioning code.

Independent Build (6)

Pattern Write build scripts that are decoupled from IDEs.
These build scripts are executed by a CI system so that
software is built at every change.

Anti-patterns Automated build relies on IDE settings. Builds are
unable to be run from the command line.

Visible Dashboards
Pattern Provide large visible displays that aggregate

information from your delivery system to provide high-
quality feedback to the Cross-Functional Team in real
time.

Anti-patterns Email-only alerts or not publicizing the feedback to
the entire team.

TESTING

Automate Tests
Pattern Automate the verification and validation of software

to include unit, component, capacity, functional, and
deployment tests

Anti-patterns Manual testing of units, components, deployment, and
other types of tests.

Unit- Automating tests without any dependencies.

Component- Automating tests with dependencies to other
components and heavyweight dependencies such as the database
or file system.

Deployment- Automating tests to verify the deployment and
configuration were successful. Sometimes referred to as a “smoke
tests”.

Functional- Automating tests to verify the behavior of the software
from a user’s perspective.

Capacity- Automating load and performance testing in near-
production conditions.

Isolate Test Data (1)
Pattern Use transactions for database-dependent tests (e.g.,

component tests) and roll back the transaction when
done. Use a small subset of data to effectively test
behavior.

Anti-patterns Using a copy of production data for Commit Stage
tests. Running tests against a shared database.

Parallel Tests (1)
Pattern Run multiple tests in parallel across hardware instances

to decrease the time in running tests.

Anti-patterns Running tests on one machine or instance. Running
dependent tests that cannot be run in parallel.

Stub Systems (1)
Pattern Use stubs to simulate external systems to reduce

deployment complexity.

Anti-patterns Manually installing and configuring interdependent
systems for Commit Stage build and deployment.

DEPLOYMENT PIPELINE

Deployment Pipeline (1)
Pattern A deployment pipeline is an automated

implementation of your application’s build, deploy,
test, and release process.

Anti-patterns Deployments require human intervention (other
than approval or clicking a button). Deployments are
not production ready.

Value-Stream Map (4)
Pattern Create a map illustrating the process from check in to

the version-control system to the software release to
identify process bottlenecks.

Anti-patterns Separately defined processes and views of the
checkin to release process.

BUILD AND DEPLOYMENT SCRIPTING

Dependency Management (5)
Pattern Centralize all dependent libraries to reduce bloat,

classpath problems, and repetition of the same
dependent libraries and transitive dependencies
from project to project.

Anti-patterns Multiple copies of the same binary dependencies
in each and every project. Redefining the same
information for each project. Classpath hell!

Common Language (1)
Pattern As a team, agree upon a common scripting

language - such as Perl, Ruby, or Python - so that
any team member can apply changes to the Single
Delivery System.

Anti-patterns Each team uses a different language making it
difficult for anyone to modify the delivery system
reducing cross-functional team effectiveness.

Externalize Configuration (5)
Pattern Changes between environments are captured as

configuration information. All variable values are
externalized from the application configuration into
build/deployment-time properties.

Anti-patterns Hardcoding values inside the source code or per
target environment.

4 Continuous Delivery: Patterns and Antipatterns in the Software Life Cycle

DZone, Inc. | www.dzone.com

Fail Fast (6)

Pattern Fail the build as soon as possible. Design scripts so
that processes that commonly fail run first. These
processes should be run as part of the Commit
Stage.

Anti-patterns Common build mistakes are not uncovered until late in
the deployment process.

Fast Builds (6)

Pattern The Commit Build provides feedback on common
build problems as quickly as possible - usually in under
10 minutes.

Anti-patterns Throwing everything into the commit stage
process, such as running every type of automated
static analysis tool or running load tests such that
feedback is delayed.

Scripted Deployment (5)

Pattern All deployment processes are written in a script,
checked in to the version-control system, and run as
part of the Single Delivery System.

Anti-patterns Deployment documentation is used instead of
automation. Manual deployments or partially
manual deployments. Using GUI to perform a
deployment.

Unified Deployment (5)

Pattern The same deployment script is used for each
deployment. The Protected Configuration – per
environment - is variable but managed.

Anti-patterns Different deployment script for each target
environment or even for a specific machine. Manual
configuration after deployment for each target
environment.

DEPLOYING AND RELEASING APPLICATIONS

Binary Integrity (5)
Pattern Build your binaries once, while deploying the

binaries to multiple target environments, as
necessary.

Anti-patterns Software is built in every stage of the deployment
pipeline.

Canary Release

Pattern Release software to production for a small subset
of users (e.g. , 10%) to get feedback prior to a
complete rollout.

Anti-patterns Software is released to all users at once.

Blue-Green Deployments (1)
Pattern Deploy software to a non-production environment

(call it blue) while production continues to run. Once
it’s deployed and “warmed up”, switch production
(green) to non-production and blue to green
simultaneously.

Anti-patterns Production is taken down while the new release is
applied to production instance(s).

Dark Launching (11)

Pattern Launch a new application or features when it affects
the least amount of users.

Anti-patterns Software is deployed regardless of number of active
users.

Rollback Release (5)
Pattern Provide an automated single command rollback of

changes after an unsuccessful deployment.

Anti-patterns Manually undoing changes applied in a recent
deployment. Shutting down production instances
while changes are undone.

Self-Service Deployment (1)
Pattern Any Cross-Functional Team member selects the

version and environment to deploy the latest
working software.

Anti-patterns Deployments released to team are at specified intervals
by the “Build Team”. Testing can only be performed in
a shared state without isolation from others.

INFRASTRUCTURE AND ENVIRONMENTS

Automate Provisioning (1)
Pattern Automate the process of configuring your

environment to include networks, external services,
and infrastructure.

Anti-patterns Configured instances are “works of art” requiring team
members to perform partially or fully manual steps to
provision them.

Behavior-Driven Monitoring (1)
Pattern Automate tests to verify the behavior of the

infrastructure. Continually run these tests to provide
near real-time alerting.

Anti-patterns No real-time alerting or monitoring. System
configuration is written without tests.

5 Continuous Delivery: Patterns and Antipatterns in the Software Life Cycle

DZone, Inc. | www.dzone.com

Immune System (9)
Pattern Deploy software one instance at a time while

conducting Behavior-Driven Monitoring. If an error
is detected during the incremental deployment, a
Rollback Release is initiated to revert changes.

Anti-patterns Non-incremental deployments without monitoring.

Lockdown Environments (1)
Pattern Lock down shared environments from unauthorized

external and internal usage, including operations
staff. All changes are versioned and applied through
automation.

Anti-patterns The “Wild West”: any authorized user can access
shared environments and apply manual configuration
changes, putting the environment in an unknown state
leading to deployment errors.

Production-Like Environments (1)
Pattern Target environments are as similar to production as

possible.

Anti-patterns Environments are “production like” only weeks or days
before a release. Environments are manually configured
and controlled.

Transient Environments
Pattern Utilizing the Automate Provisioning, Scripted

Deployment and Scripted Database patterns, any
environment should be capable of terminating and
launching at will.

Anti-patterns Environments are fixed to “DEV, QA” or other pre-
determined environments.

DATA

Database Sandbox (7)
Pattern Create a lightweight version of your database – using

the Isolate Test Data pattern. Each developer uses
this lightweight DML to populate his local database
sandboxes to expedite test execution.

Anti-patterns Shared database. Developers and testers are
unable to make data changes without it potentially
adversely affecting other team members
immediately.

Decouple Database (1)
Pattern Ensure your application is backward and forward

compatible with your database so you can deploy each
independently

Anti-patterns Application code data are not capable of being
deployed separately.

Database Upgrade (7)

Pattern Use scripts to apply incremental changes in each
target environment to a database schema and data.

Anti-patterns Manually applying database and data changes in
each target environment.

Scripted Database (7)
Pattern Script all database actions as part of the build

process.

Anti-patterns Using data export/import to apply data changes.
Manually applying schema and data changes to the
database.

INCREMENTAL DEVELOPMENT

Branch by Abstraction (2)
Pattern Instead of using version-control branches, create an

abstraction layer that handles both an old and new
implementation. Remove the old implementation.

Anti-patterns Branching using the version-control system leading
to branch proliferation and difficult merging. Feature
branching.

Toggle Features (10)

Pattern Deploy new features or services to production but limit
access dynamically for testing purposes.

Anti-patterns Waiting until a feature is fully complete before
committing the source code.

COLLABORATION

Delivery Retrospective (1)
Pattern For each iteration, hold a retrospective meeting

where everybody on the Cross-Functional Team
discusses how to improve the delivery process for
the next iteration.

Anti-patterns Waiting until an error occurs during a deployment for
Dev and Ops to collaborate. Having Dev and Ops work
separately.

Cross-Functional Teams (1)
Pattern Everybody is responsible for the delivery process.

Any person on the Cross-Functional Team can
modify any part of the delivery system.

Anti-patterns Siloed teams: Development, Testing, and
Operations have their own scripts and processes
and are not part of the same team.

Amazon.com has an interesting take on this approach. They call
it “You build it, you run it”. Developers take the software they’ve
written all the way to production.

Root-Cause Analysis (1)
Pattern Learn the root cause of a delivery problem by

asking “why” of each answer and symptom until
discovering the root cause.

Anti-patterns Accepting the symptom as the root cause of the
problem.

TOOLS

This is meant to be an illustrative list, not an exhaustive list, to give
you an idea of the types of tools and some of the vendors that help
to enable effective Continuous Delivery. The Java, .NET and Ruby
platforms are represented. The tools that span categories have been

6 Continuous Delivery: Patterns and Antipatterns in the Software Life Cycle

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2011 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOKABOUT THE AUTHOR

assigned to the most appropriate category or duplicated when
necessary.

Category Example Software Tools

Configuration
Management

Subversion (SVN), git, Perforce, PassPack,
PasswordSafe, ESCAPE, ConfigGen

Continuous Integration Bamboo, Jenkins, AntHill Pro, Go, TeamCity,
TFS 2010, Electric Commander. Supporting
tools: , Doxygen, Grand, GraphViz, JavaDoc,
NDoc, SchemaSpy, UmlGraph, CheckStyle,
Clover, Cobertura, FindBugs, FxCop, JavaNCSS,
JDepend, PMD, Sonar, Simian

Testing Twist , AntUnit, Cucumber, DbUnit, webrat,
easyb, Fitnesse, JMeter, JUnit, NBehave, SoapUI,
Selenium, RSpec, SauceLabs

Deployment Pipeline Go, AntHill Pro

Build and Deployment
Scripting

Ant, AntContrib, NAnt, MSBuild, Buildr, Gant,
Gradle, make, Maven, Rake, Java Secure Channel,
ControlTier, Altiris, Capistrano, Fabric, Func

Infrastructure and
Environments

AWS EC2, AWS S3, Windows Azure, Google
App Engine, AWS Elastic Beanstalk, Heroku,
Capistrano, Cobbler, BMC Bladelogic, CFEngine,
IBM Tivoli Provisioning Manager, Puppet, Chef,
Bcfg2, AWS Cloud Formation, Windows Azure
AppFabric, rPath, JEOS, BoxGrinder, CLIP,
Eucalyptus, AppLogic, CloudKick, CloudWatch,
Nagios, Zabbix, Zenoss

Data Hibernate, MySQL, Liquibase, Oracle, PostgreSQL,
SQL Server, SimpleDB, SQL Azure, Ant, MongoDB,
dbdeploy

Components and
Dependencies

Ivy, Archiva, Nexus, Artifactory, Bundler

Collaboration Mingle, Greenhopper, JIRA

REFERENCES

1. Jez Humble and David Farley, “Continuous Delivery: Reliable Software Releases through Build,
Test, and Deployment Automation”, Addison Wesley Professional, 2010

2. Paul Hammant and www.continuousdelivery.com

3. Stephen P. Berczuk and Brad Appleton, “Software Configuration Management Patterns.”,
Addison Wesley Professional, 2003

4. Mary and Tom Poppendieck, “Leading Lean Software Development”, Addison Wesley, 2009

5. Paul M. Duvall, “Continuous integration. Patterns and Antipatterns”, DZone refcard #84, 2010
http://bit.ly/l8rfVS

6. Paul M. Duvall, “Continuous integration. Improving Software Quality and Reducing Risk”,
Addison Wesley, 2007

7. Scott W. Ambler and Pramodkumar J. Saladage, “Refactoring Databases. Evolutionary
Database Design”, Addison Wesley, 2006.

8. Paul M. Duvall, IBM developerWorks series “Automation for the people” http://ibm.co/iwwvPX

9. IMVU: http://bit.ly/jhqP5f

10. Martin Fowler and Facebook: http://on.fb.me/miBrOM

11. Facebook Engineering: http://on.fb.me/miBrOM

12. Paul Julius, Enterprise Continuous Integration Maturity Model, http://bit.ly/m7h5vC

Paul M. Duvall is the CTO of Stelligent, (http://stelligent.

com/) a company that helps organizations with Continuous

Integration and Delivery, Cloud Migrations and Elastic

Operations. Paul is the author of many books including the

Jolt-award winning book Continuous Integration: Improving

Software Quality and Reducing Risk (http://amzn.to/cibook) and the recently

published Startup@Cloud: 33 tips for running your company using cloud-based

software (http://amzn.to/startupatcloud). He is passionate about the cloud and

automation and blogs at http://devopscloud.com/.

Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation

The book has two themes: automation and
collaboration. Delivering software of any complexity
involves people with a bunch of skills: testers,
developers, and sysadmin / operations personnel.
The last group of people often gets left out of the

process of delivering software until the end, and even testers are
often not as heavily involved in the development process as they
should be.

