2011 Liferay
SYymposiums

MAKE YOUR CONNECTION

CONNECT WITH OUR FEATURED SPEAKERS

¢

EAST COAST SYMPOSIUM
Greater Washington DC | May 10-11, 2011

HUNGARY SYMPOSIUM
Budapest | May 26, 2011

YA =@= FRANCE SYMPOSIUM
Paris | June 15, 201
BRIAN CHAN BRYAN CHEUNG BRIAN KIM PAUL HINZ
Founder & Chief Founder & Chief Founder & Chief Chief Marketing
Software Architect Executive Officer ~ Operating Officer Officer = WEST COAST SYMPOSIUM
Los Angeles, CA | September 2011
=@= SPAIN SYMPOSIUM
Madrid | October 4-5, 2011
SN =@= EUROPE SYMPOSIUM
NATE CAVANAUGH JORGE FERRER ~ RAYMOND AUGE JAMES FALKNER Frankfurt | October 18-19, 2011
Director of Senior Software Senior Software Liferay Community
Ul Engineering Architect Architect Manager == ITALY SYMPOSIUM
Roma | November 18, 2011
(LEARN MORE ABOUT LIFERAY INDIA SYMPOSIUM
Bangalore | TBA - Coming Soon!

WWW.LIFERAY.COM/EVENTS/LIFERAY-SYMPOSIUMS

*Dates are subject to change.

@ WWW.LIFERAY.COM n WWW.FACEBOOK.COM/LIFERAY & WWW.TWITTER.COM/LIFERAY % LI FE R/AY

+H
—
Get More Refcardz! Visit refcardz.com g

>
©
S
[
5=
—
O
[=
©
=
)
©
©
>
=
.t
e
c
o
£
o
9
o
>
(V]
(a]
=
©
i
S
(o]
o
o)
c
=
(]
i
("]
©
=

.+ ! DZone Refcardz

brought to you by...

"iLIFERAY vaadin }=>

« Starting the Development

= Portlet Development with Vaadin

= Tools for Vaadin Development

= Composing the User Interface with Vaadin
* Theming Vaadin Applications

* Inter-Portlet Communication (IPC)

Mastering Portal Ul Development

With Vaadin and Liferay

By Sami Ekblad, James Falkner

The open source Liferay Portal has become a popular way of
implementing enterprise websites. Providing an integrated
platform for application development and deployment, Liferay has
also become an environment for running business applications.
For application development, Liferay Portal includes Vaadin as a
pre-packaged framework for developing attractive, easy-to-use
applications.

About this Refcard

This Refcard gives a quick overview of the user interface
development with Vaadin on Liferay. It covers topics like portlet
setup, configuration, inter-portlet communication (IPC), Ul
composition, and theming. To get a more general understanding
of Liferay Portal and Vaadin framework, see the Refcards “Liferay
Essentials” and “Vaadin: A Familiar Way to Build Web Apps With
Java”.

STARTING THE DEVELOPMENT

Strategies for Portal User Interface
Portlets are small web applications written in Java. They run in

a piece of a web user interface within a portal. Portal manages

the lifecycle and aggregation of portlets to a single visible web
page. When designing a user interface for a portal, there are a few
strategies based on Ul granularity:

Strategy Description

Small generic portlets Small user interface, very generic and portal-wide functions:
communicating with each ¢ Light-weight, custom user interface

other

® Requires more inter-portlet communication
¢ Fine-grained portlets for portal-wide reuse

e Typically small, public applications like search
boxes,shopping carts

ntegrated application Leverage Liferay as an application platform for a business
developed as a single portlet | application:

* Reuse an existing application user interface
or create and application that can run also as
standalone application.

e Complete, integrated user interface

® Rich desktop-like user experience

portal there are few strategies based on Ul granularity:

Naturally, it is possible to have a mixture of these and use different
approaches to meet the usability requirements.

Available Ul frameworks

Liferay supports a number of web frameworks for development

of portlet user interfaces. Which you should use depends on your
background as well as the strategy you choose for you application.

Framework | Description Programming

Languages

Alloy UI Rich client-side JavaScript/CSS framework | JavaScript, JSP
based on YUI Library.

JavaServerFaces Server-side user interface component Java, XML, JSP
framework based on JSP and tag libraries.

Spring MVC Action oriented Model-View-Controller Java, XML, JSP
framework for web pages.

Struts 2 Action oriented Model-View-Controller Java, XML, JSP
framework for web pages.

Vaadin Arich Java-only component framework based Java
on Ajax/GWT

Apache Wicket Server-side component framework based on Java, HTML
Java and HTML.

Different portlets can use different frameworks to implement the user
interface.

PORTLET DEVELOPMENT WITH VAADIN

Vaadin is a server- and component-oriented user interface framework
for Java web applications. Vaadin applications can be hosted as
standalone web applications as well as portlets in portals like Liferay.
Vaadin is a good choice for building complete applications that use
Liferay as a platform.

Portlets created with Vaadin are essentially Ajax web applications
that can be considered single-page applications. This means
that the page is not reloaded after it is opened initially; rather,

it communicates user interaction with the server through Ajax
communications.

Along with the desktop-like user experience, Vaadin provides all the
typical features of a web framework, such as deep-linking and back-
button support.

TOOLS FOR VAADIN DEVELOPMENT

Since Liferay 6.x, there have been several tools to help you in
developing portlets with Vaadin. These tools are meant to simplify

Support from the
Vaadin team

Pro Add-on compo-
nents and tools

Bug fix guarantee,
feature voting and
knowledge base

vaadin.com/pro

DZone, Inc. | www.dzone.com

’DZone Refcardz FLIFERAY vaadin}>

Mastering Portal Ul Development With Vaadin and Liferay

the creation of portlets and help portal administrators maintain the
system.

Liferay Plugins SDK

The Liferay Plugins SDK is a development environment that helps
in the development of portlets. This development environment is
command-line-based and relies on the Apache Ant (though you
may also use Maven) and allows development of all types of Liferay
plugins.

The Plugins SDK is both a project skeleton generator and a location
where your projects are stored. You can download the Plugins SDK
from http://liferay.com/downloads/liferay-portal/additional-files.

To get started using the Plugins SDK, refer to the Refcard “Liferay
Essentials: A Definitive Guide for Enterprise Portal Development” at
http://refcardz.dzone.com/refcardz/essential-liferay-leading-open.

Liferay IDE

Liferay IDE is an extension for the Eclipse IDE that adds support for
the development of plug-in projects for the Liferay Portal platform.
Since version 1.2, the Liferay IDE has supported Vaadin by offering
wizards for creating portlet plugin projects. Up-to-date information
about Liferay IDE can be found at http://www.liferay.com/community/
wiki/-/wiki/Main/Liferay+IDE.

The Vaadin Plugin for Eclipse can also be used with the Liferay IDE
to give developers the ability to easily create Vaadin+Liferay projects
and visually compose Vaadin components and portlets for use within
Liferay.

Vaadin Control Panel for Liferay

The Vaadin Control Panel for Liferay gives portal administrators an
interface to maintain the portal-wide Vaadin resources. You can use
it to:

e Check and update the Vaadin libraries in portal

e Recompile the Vaadin widgetset when installing new
Vaadin Add-ons.

You can access the Control Panel in Liferay after logging in as an
administrator at Manage > Control Panel > Portal > Vaadin.

The latest version of the control panel is available at http://vaadin.
com/addon/vaadin-control-panel-for-liferay.

COMPOSING THE USER INTERFACE WITH VAADIN

With Vaadin, the user interface is built from user interface
components. They are server-side Java classes that implement a
single Ul control such as a button, select, or a layout.

With layout components, you can compose larger components that
hierarchically build up the application UL.

Vaadin Application

A Vaadin application is defined in a class that extends the com.
vaadin.Application. This is the class that you should define as the
‘application” init-param in portlet.xml as described in later sections.

A new instance of this class is created when a new user comes to
portal view where the portlet resides.

Here is the code for a minimal Vaadin application:

package org.vaadin.sample;

import com.vaadin.Application;
import com.vaadin.ui.Label;
import com.vaadin.ui.Window;

public class MyApplication extends Application {
@Override
public void init() {
Window w = new Window();
w.addComponent (new Label(“Hello Liferay!”));
setMainWindow(w) ;

}

Vaadin Ul Components

Vaadin Framework includes over 60 stock components. You can find a
rapidly growing number of open-source and commercial add-on
components at http://vaadin.com/directory.

Furthermore, you can extend Vaadin by creating new components
with the Google Web Toolkit (GWT). GWT is an open-source Java-
to-JavaScript compiler that allows you to build client-side features
without JavaScript. See additional information at http://code.google.
com/webtoolkit/.

You can find all the components in the Java package com.vaadin.ui.
Add-ons may use their own package naming, but it is typical that they
start with org.vaadin.

TIP: You can test and try different Vaadin components online at http://
demo.vaadin.com/sampler. All the demos include source code and
documentation.

User Interface Layout
Start by creating a main Window for your application and putting the
initial content in there. The user interface structure is a hierarchy of
nested layouts and components. Here is an example of a simple user
interface hierarchy:
MyApplication
Window
VerticallLayout
TextField
TextField

Button

The above Ul could be created in Java as follows:
Window w = new Window(“Subscribe Newsletter”);
setMainWindow(w) ;
w.setContent (new VerticallLayout());

TextField name = new TextField(“Name”);
TextField email = new TextField(“Email”);
Button subscribeBtn = new Button(“Subscribe”);

w.addComponent (name) ;
w.addComponent (email);

w.addComponent (subscribeBtn) ;

TIP: You should avoid creating too deeply nested layout structures. In
particular, older browsers can become slow. Instead, use the
CustomLayout, GridLayout, or some lightweight layouts like the
CSSLayout.

User Interface Events

Vaadin is an event-based framework. You can receive user-triggered
events in your application by registering a listener for it. Here is an
example for Button.ClickEvent:

DZone, Inc. | www.dzone.com

7 DZone Refcardz T:LIFERAY vaadin}=

Mastering Portal Ul Development With Vaadin and Liferay

subscribeBtn.addListener(new Button.ClickListener() {
@Override
public void buttonClick(ClickEvent event) {
N coo

b

Event listeners are executed in the server side synchronously. You can
fetch data and update the user interface by adding and removing
components.

TIP: Good practice for event listeners is to only call your Java control
code and let them do the Ul updates. This is better object-oriented
design, and it enhances readability of your Java code.

Vaadin Visual Editor

The visual editor is part of the Vaadin Plugin for Eclipse and is
available at http://vaadin.com/eclipse. It includes a WYSIWYG editor
for defining a CustomComponent; that is, Ul composites in Vaadin.

The visual editor generates the Java code that you can continue to
modify and extend.

EML

Firstname Date ofBirth
“« < May 2011 > »

v Components

Lasiname
15 16 17 18 @ 20 21
o[cancol Jo| ok

The visual editor runs inside the Eclipse IDE, giving developers a
quick way of creating user interface without writing the code itself.

To activate the visual editor, create a new component using the
Eclipse wizard: New > Vaadin CustomComponent (composite),
open the file with the right editor Open with > Vaadin Editor, and
choose “Design” tab.

Every time you save the file in the Design mode, the Vis ual Designer
generates the Java code that makes up the Ul.

Note: The Visual editor works with the “reindeer” theme, but you can
change the theme in your Application class by calling the setTheme
method. For example:

myApplication.setTheme(“liferay”).

THEMING VAADIN APPLICATIONS

Vaadin is designed to support parallel work of application developers
and graphic designers by strongly separating the graphical elements
from the functionality.

All Vaadin applications have an associated theme. Themes are
essentially a collection of CSS and images that define the look and
feel of the Vaadin's user interface components.

The following Vaadin themes are included in Liferay by default:

Theme Description

base Base theme for creating your own customized theme. Handles
most of the cross-browser issues.

liferay A Liferay 6 look-a-like theme. Use this to create applications
that match the Liferay 6 default styles.

reindeer Reindeer is default look and feel of Vaadin. It provides
minimalistic, but stylish look for business applications.

runo More colorful and rounded theme for web applications.

Structure of a Vaadin Theme

Vaadin themes are located in the themes folder of the portal. They
are a collection of CSS and images that give the Vaadin components
their look and feel.

The theme folder must contain the styles.css stylesheet, and custom
layouts must be placed in the layouts sub-folder. Other contents may
be named freely.

A typical Vaadin theme follows the structure under the theme folder:

Theme Description

styles.css The CSS for the whole theme.

layouts/ Directory for CustomLayout definition files.

<component>/ CSS definitions for a single Ul component. Only used to split

the CSS for easier maintenance. These are compiled into
styles.css is as a single CSS file.

<component>/img/ Static image resources for the component.

Typically, you start to develop your theme by inheriting some existing
-theme:

@import url(../liferay/styles.css);

After that, you can apply the CSS rules that override the original
theme without completely rewriting a theme.

To activate the theme in your portlet, add the following to the init
method of your application:
public void init() {
setTheme (“mytheme”) ;
7] coo

CSS Classnames in Vaadin

To maximize the use of theme inheritance and to help customize
components, the CSS class selectors in Vaadin are defined the
following scheme .v-<component|item>. All style names are
lowercase.

As an example, the following CSS rules change the color of all
captions and adds borders to all TextFields:

.v-caption {color: red;}

.v-textfield {border: 1lpx solid red;}

DZone, Inc. | www.dzone.com

'DZone Refcardz FuLIFERAY vaadin }=

Mastering Portal Ul Development With Vaadin and Liferay

The most relevant CSS class names are:

Class Name Description
v-app The top-level DIV container for the whole application.
v-window Container for the application window.

.v-<component> Container for a specific component type. Note that captions
are managed outside the component, by the containing

Layout.

To avoid style leakage outside the Vaadin application, it is
recommended that you use the most specific CSS selector when
applying your own styles and limit them by using container, such as:

JBoss 5.x

Location

Global vaadin.jar

${UBOSS_INSTANCE_DIR}/deploy/ROOT.war/WEB-INF/lib

Vaadin Add-ons

${JBOSS_INSTANCE_DIR}/deploy/ROOT.war/WEB-INF/lib

Vaadin CSS Themes

${UBOSS_INSTANCE_DIR}/deploy/ROOT.war/VAADIN/
themes

Vaadin Client-side Widgetset

${UBOSS_INSTANCE_DIR}/deploy/ROOT.war/VAADIN/
widgetsets/

GWT jar-files (only needed
for compiling widgetset)

${JBOSS_INSTANCE_DIR}/deploy/ROOT.war/WEB-INF/
vaadin/gwt

.v-app .v-caption {col

VAADIN PORTAL-WIDE SETTINGS

The core Vaadin Frame

or: green; }

work consists of a single jar file that includes

the framework itself along with the core components. This jar
along with the CSS themes and custom widgets are installed to the
portal itself, and they are shared by all Vaadin-based portlets. This
means that only a single version of Vaadin is supported in a portal

installation.

A Liferay 6 installation includes the following Vaadin-related files and

directories:
Class Name Description
vaadin.jar Vaadin Framework, portlet integration and core Ul

(Java jar-file)

components.

widgetsets/<name>/

(directory)

Client-side widgets of Vaadin. JavaScript compiled with
Google Web Toolkit (GWT). Must be publicly accessible.

theme/<theme name>/

(directory)

Collection of CSS and static images that define the look of the
Vaadin components. Must be publicly accessible.

Liferay Portlet Setup

To use Vaadin in a Liferay portlet, the portlet has to be configured to
use Vaadin and optional add-on libraries by creating and/or editing
various configuration files.

Anatomy of a Portlet Project

Portlets (Vaadin and non-Vaadin) are built as Liferay plugins, which
can be compiled and hot-deployed into a Liferay environment. In
their source (uncompiled) form, there are several file and directory
structures used to manage the project.

Folder Description

WebContent/ (or docroot/) This folder is the “root” of your Vaadin portlet application

WEB-INF Standard WEB-INF folder for web applications. Also contains
Liferay-specific descriptors such as portlet.xml, liferay-portlet.
xml, and others.

WEB-INF/src Java source code for the Vaadin Portlet

build.xml ANT build script controlling building and deploying

liferay-display.xml Describes the category under which the portlet should appear

in the Liferay Ul

<add-on>-<version>.jar

(Java jar-file)

An extension to Vaadin - new Ul component, data-binding or
a theme. Standard jar file.

Describes properties used by Liferay’s hot deploy mechanism,
most notably which Vaadin dependencies to include when
compiling the plugin.

liferay-plugin-package.
properties

gwt-userjar, gwt-dev.jar

(Java jar-files)

Google Web Toolkit libraries needed to re-compile the client-
side JavaScript if new components are imported.

Depending on the app
different locations.

lication server used, these files are installed in

Tomcat 6.x

Location

Global vaadin.jar

${TOMCAT_DIR}/webapps/ROOT/WEB-INF/lib

Vaadin Add-ons

${TOMCAT_DIR}/webapps/ROOT/WEB-INF/lib

Vaadin CSS Themes

${TOMCAT_DIR}/webapps/ROOT/html/VAADIN/themes

Vaadin Client-side Widgetset

${TOMCAT_DIR}/webapps/ROOT/html|/VAADIN/widgetset

GWT jar-files (only needed
for compiling widgetset)

${TOMCAT_DIR}/webapps/ROOT/WEB-INF/vaadin/gwt

GlassFish 3.x

Location

Global vaadin.jar

${GLASSFISH_DOMAIN_DIR}/applications/j2ee-modules/
Liferay-portal/WEB-INF/lib

Vaadin Add-ons

${GLASSFISH_DOMAIN_DIR}/applications/j2ee-modules/
Liferay-portal/WEB-INF/lib

Vaadin CSS Themes

${GLASSFISH_DOMAIN_DIR}/applications/j2ee-modules/
Liferay-portal/VAADIN/themes

Vaadin Client-side Widgetset

${GLASSFISH_DOMAIN_DIR}/applications/j2ee-modules/
Liferay-portal/VAADIN/widgetset

GWT jar-files (only needed
for compiling widgetset)

${GLASSFISH_DOMAIN_DIR}/applications/j2ee-modules/
Liferay-portal WEB-INF/vaadin/gwt/

Describes Liferay-specific portlet enhancements (akin to
portlet.xml for generic portlets). There are many settings here
to customize your portlet.

liferay-portlet.xml

portletxml Standard JSR-168 or JSR-286 portlet descriptor, including
settings for performing non-Vaadin portlet IPC.
web.xml Standard Web Application descriptor. You should not need to

edit this for use with Vaadin.

Liferay Plugin Package Properties

The liferay-plugin-package.properties file defines a number of
settings for the portlet, most importantly the Vaadin Framework and
Vaadin Add-on jar-files to be used.

The following example of a dependency definition:

name=MyVaadinPortletName
module-group-id=vaadin
module-incremental-version=1
tags=
short-description=
change-log=
page-url=http://www.liferay.com
author=Your Company, Inc.
licenses=LGPL
portal-dependency-jars=\
vaadin.jar,\
paperstack-0.8.1.jar,\

console-1.0.0.jar

The Vaadin-related portlet dependencies are highlighted. The

DZone, Inc. | www.dzone.com

'DZone Refcardz FiLIFERAY vaadin }>

Developing Liferay User Interfaces with Vaadin

vaadin.jar contains the framework itself. The other dependencies,
paperstack-0.8.1.jar and console-1.0.0.jar, are Vaadin add-ons used
by the portlet.

Refer to the application server setup to see where these jar
dependencies should be installed to work at compiletime and
runtime.

Portlet Descriptor

To wire the portlet to your Vaadin application class, configure portlet
mapping in the portlet.xml:

<portlet>
<portlet-name>MyVaadinPortlet</portlet-name>
<display-name>MyVaadinPortlet</display-name>
<portlet-class>
com.vaadin.terminal.gwt.server.ApplicationPortlet2
</portlet-class>
<init-param>
<name>application</name>
<value>org.vaadin.sample.MyApplication</value>
</init-param>

</portlet>

Vaadin portlets always use the same portlet class, com.vaadin.
terminal.gwt.server.ApplicationPortlet2, and the actual application
is defined as an init-param.

Liferay Portlet Descriptor

Liferay also requires a liferay-portlet.xml descriptor file that defines
Liferay-specific parameters. In particular, Vaadin portlets must be
defined as “instanceable” but not as "ajaxable”:

<liferay-portlet-app>
<portlet>
<!-- Matches definition in portlet.xml. -->
<!-- Note: Must not be the same as servlet name. -->
<portlet-name>Portlet Example portlet</portlet-name>

<instanceable>true</instanceable>
<ajaxable>false</ajaxable>
</portlet>

</liferay-portlet-app>

This is because Vaadin portlets handle the Ajax requests internally
without Liferay’s Ajax mechanisms.

Liferay Portlet Display Descriptor

The liferay-display.xml file defines the portlet category under
which portlets are located in the Add Application window in
Liferay. Without this definition, portlets will be organized under the
“Undefined” category.

The following puts the application in a new category called “Vaadin”:

<display>
<category name="Vaadin”>
<portlet id="MyVaadinExamplePortlet” />
</category>

</display>

For more information on these and other optional descriptors, see
the Chapter 11.8 of the "Book of Vaadin” at http://vaadin.com/book
and refer to the Liferay Developer Guide at http://liferay.com/
documentation

INTER-PORTLET COMMUNICATION (IPC)

Liferay offers different IPC mechanisms to allow portlets

communicate with each other. The following table summarizes the
different IPC methods in Liferay:

Method Description

JSR 286 Portlet Events Standard portlet communication mechanism. Requires page
reload.

JavaScript Traditional client/server communication, using client-side

JavaScript, calling other portlets running in the same
page using Liferay's client-side JavaScript API: Liferay.
fire(eventName, data) Liferay.on(eventName, function, [scope])

Vaadin Addon for Liferay IPC | Mechanism for sending and receiving events between Vaadin

and non-Vaadin portlets.

Custom Event Bus Direct client-side communication between portlets (e.g. using
OpenAjax Hub). No page refresh necessary, and no server

communication is required.

Ajax Push (Reverse Ajax) Typically used for server->client notifications (for example,

in-browser chat). Long-held connections are used to push
data from server to client, as needed, instead of separate
communications for each message.

IPC in Vaadin Portlets

Vaadin portlets are based on Ajax communication that is most useful
if the user never changes the page in the browser. In this scenario,
the application talks to the server frequently and only small user
interface updates are sent to the browser. This makes the best user
experience.

When communicating with other portlets in a portal, the different
scenarios may require different approaches to optimize the user
experience.

A Vaadin portlet sending an event to a non-Vaadin portlet.
Depending on the other portlet, this typically requires a page reload.
Below is an example of sending a “date” event to another portlet.

Configure an event definition in the portlet.xml:

<event-definition>

<gname xmlns:vaadin="http://vaadin.com/portlet-
events”>vaadin:date</qname>

<value-type>java.util.Date</value-type>

</event-definition>

Send a portlet event from a Vaadin application:
((PortletApplicationContext2) getApplication().getContext())

.sendPortletEvent (getMainWindow(),

.) new QName(“http://vaadin.com/portlet-events”,
“date”),

(Date)dateField.getValue());

Receive an event in a non-Vaadin portlet:
Receiving an event in a non-Vaadin portlet:
public class MyPortlet extends GenericPortlet

@override
public void processEvent(EventRequest request,
EventResponse response)
throws PortletException, IOException {
Event e = request.getEvent();
if (“date”.equals(e.getName())) {
Date date = (Date) e.getValue();
A coo

This style of IPC relies on server-side processing of the events and,
therefore, requires a page reload to see the effects of the event in the
non-Vaadin portlet.

Communicating with a Vaadin-based portlet using Ajax. In this

DZone, Inc. | www.dzone.com

A57DZone Refcardz ¥:LIFERAY vaadin

2

6 Developing Liferay User Interfaces with Vaadin

case, the full page request is not needed.

Note: This requires the Liferay IPC add-on to be installed in the
application. For more details and instructions, go to:
http://vaadin.com/addon/vaadin-ipc-for-liferay.

Receive an event in a Vaadin application/portlet:

LiferayIPC ipc = new LiferayIPC();
ipc.addListener(“uniqueEventId”, new LiferayIPCEventListener() {
public void eventReceived(LiferayIPCEvent event) {

// Process event here

b

Send an event from another portlet using JavaScript:

LiferayIPC ipc = new LiferayIPC(); ipc.sendEvent(“uniqueEventId”,
“payloadData”);

<script>
Liferay.on(“uniqueEventId”,
function(event) {
alert(event);

);
</script>

Send an event from another portlet using JavaScript:

Receive an event from a Vaadin application/portlet using JavaScript:

<script>
Liferay.fire(“uniqueEventId”, “someData”);
</script>

This method is not suitable for sending a large amount of data,
rather, it's for notifying the portlet that something has updated. The
actual data should be shared using the database, files, or some
external storage.

Note: When sending events to non-Vaadin portlets that are ajax-
enabled (ajaxable set to true and render-weight < 1), be aware that
if a portlet takes some time to load, it might not receive the event in
the case that the event is sent before the portlet is fully initialized.

Further Information

For up-to-date and in-depth information, refer to the Liferay
official documentation for Liferay at www.liferay.com/ and Vaadin
documentation at vaadin.com/book/.

ABOUT THE AUTHOR

Sami Ekblad is one of the original authors of the Vaadin

- framework. Working in web application development

< since 1998, he now works as Partner Manager at Vaadin

Ltd to help professional web developers to get most
out of the Vaadin framework and tools. He holds B.Sc. degree in
Computer Science from the University of Turku.

manager, and software developer working at Liferay,

portal. In addition to Liferay, James has been active in

a number of other open source products and projects, including
the GlassFish Enterprise portfolio, Community/Social Equity,

OpenSolaris, OASIS standards, and more. contributor and speaker at
industry events such as JavaOne, JAX, and others.

Getting Started with

Cloud Computing

By Danil Rubio

James Falkner is an open-source evangelist, community

producers of the world's leading open source enterprise

RECOMMENDED BOOK

to building portals on the Liferay 6 platform. Fully supported

and authorized by Liferay, this book guides you smoothly from

your first exposure to Liferay through the crucial day-to-day

tasks of building and maintaining an enterprise portal that
works well within your existing IT infrastructure. The book starts with
the basics: setting up a development environment and creating a
working portal. Then, you'll learn to build on that foundation with
social features, tagging, ratings, and more. As the book progresses,
you'll explore the Portlet 2.0 API, and learn how to create your own
portlet applications.

Liferay in Action is a comprehensive and authoritative guide
Y
i

Upcoming Refcardz

NetBeans 7.0 Java Editor

MySQL 5.5
C
Free PDF L e

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

Copyright © 2011 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a

retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

DZone, Inc. ISBN-13: 978-1-93k502-40-0
140 Preston Executive Dr. ISBN-10: 1-93bL502-40-2
Suite 100 50795
Cary, NC 27513

888.678.0399

919.678.0300

Refcardz Feedback Welcome

refcardz@dzone.com 97781936"502400

Sponsorship Opportunities
sales@dzone.com Version 1.0

& o Dtone Refcards Browse our collection of over 100 Free Cheat Sheets

$7.95

