

DZone, Inc. | www.dzone.com

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#148
M

as
te

ri
n

g
 P

o
rt

al
 U

I
D

e
ve

lo
p

m
e

n
t

W
it

h
 V

aa
d

in
 a

n
d

 L
if

e
ra

y

By Sami Ekblad, James Falkner

Mastering Portal UI Development
With Vaadin and Liferay

The open source Liferay Portal has become a popular way of
implementing enterprise websites. Providing an integrated
platform for application development and deployment, Liferay has
also become an environment for running business applications.
For application development, Liferay Portal includes Vaadin as a
pre-packaged framework for developing attractive, easy-to-use
applications.

About this Refcard
This Refcard gives a quick overview of the user interface
development with Vaadin on Liferay. It covers topics like portlet
setup, configuration, inter-portlet communication (IPC), UI
composition, and theming. To get a more general understanding
of Liferay Portal and Vaadin framework, see the Refcards “Liferay
Essentials” and “Vaadin: A Familiar Way to Build Web Apps With
Java”.

STARTING THE DEVELOPMENT

Strategies for Portal User Interface
Portlets are small web applications written in Java. They run in
a piece of a web user interface within a portal. Portal manages
the lifecycle and aggregation of portlets to a single visible web
page. When designing a user interface for a portal, there are a few
strategies based on UI granularity:

Strategy Description

Small generic portlets
communicating with each
other

Small user interface, very generic and portal-wide functions:
•	 Light-weight, custom user interface

•	 Requires more inter-portlet communication

•	 Fine-grained portlets for portal-wide reuse

•	 Typically small, public applications like search
boxes,shopping carts

ntegrated application
developed as a single portlet

Leverage Liferay as an application platform for a business
application:

•	 Reuse an existing application user interface
or create and application that can run also as
standalone application.

•	 Complete, integrated user interface

•	 Rich desktop-like user experience

portal there are few strategies based on UI granularity:

Naturally, it is possible to have a mixture of these and use different
approaches to meet the usability requirements.

Available UI frameworks
Liferay supports a number of web frameworks for development
of portlet user interfaces. Which you should use depends on your
background as well as the strategy you choose for you application.

Framework Description Programming
Languages

Alloy UI Rich client-side JavaScript/CSS framework
based on YUI Library.

JavaScript, JSP

JavaServerFaces Server-side user interface component
framework based on JSP and tag libraries.

Java, XML, JSP

.

Spring MVC Action oriented Model-View-Controller
framework for web pages.

Java, XML, JSP

Struts 2 Action oriented Model-View-Controller
framework for web pages.

Java, XML, JSP

Vaadin A rich Java-only component framework based
on Ajax/GWT

Java

Apache Wicket Server-side component framework based on
Java and HTML.

Java, HTML

Different portlets can use different frameworks to implement the user
interface.

PORTLET DEVELOPMENT WITH VAADIN

Vaadin is a server- and component-oriented user interface framework
for Java web applications. Vaadin applications can be hosted as
standalone web applications as well as portlets in portals like Liferay.
Vaadin is a good choice for building complete applications that use
Liferay as a platform.

Portlets created with Vaadin are essentially Ajax web applications
that can be considered single-page applications. This means
that the page is not reloaded after it is opened initially; rather,
it communicates user interaction with the server through Ajax
communications.

Along with the desktop-like user experience, Vaadin provides all the
typical features of a web framework, such as deep-linking and back-
button support.

TOOLS FOR VAADIN DEVELOPMENT

Since Liferay 6.x, there have been several tools to help you in
developing portlets with Vaadin. These tools are meant to simplify

brought to you by...

CONTENTS INCLUDE:
n	 Starting the Development
n	 	Portlet Development with Vaadin
n	 Tools for Vaadin Development
n	 Composing the User Interface with Vaadin
n	 Theming Vaadin Applications
n	 Inter-Portlet Communication (IPC)

Vaadin
Pro Account

$99
from

permonth

Support from the
Vaadin team

Pro Add-on compo-
nents and tools

Bug fix guarantee,
feature voting and
knowledge base

Try one month for free
with code: DZONE

vaadin.com/pro

2 Mastering Portal UI Development With Vaadin and Liferay

DZone, Inc. | www.dzone.com

the creation of portlets and help portal administrators maintain the
system.

Liferay Plugins SDK
The Liferay Plugins SDK is a development environment that helps
in the development of portlets. This development environment is
command-line-based and relies on the Apache Ant (though you
may also use Maven) and allows development of all types of Liferay
plugins.

The Plugins SDK is both a project skeleton generator and a location
where your projects are stored. You can download the Plugins SDK
from http://liferay.com/downloads/liferay-portal/additional-files.

To get started using the Plugins SDK, refer to the Refcard “Liferay
Essentials: A Definitive Guide for Enterprise Portal Development” at
http://refcardz.dzone.com/refcardz/essential-liferay-leading-open.

Liferay IDE
Liferay IDE is an extension for the Eclipse IDE that adds support for
the development of plug-in projects for the Liferay Portal platform.
Since version 1.2, the Liferay IDE has supported Vaadin by offering
wizards for creating portlet plugin projects. Up-to-date information
about Liferay IDE can be found at http://www.liferay.com/community/
wiki/-/wiki/Main/Liferay+IDE.

The Vaadin Plugin for Eclipse can also be used with the Liferay IDE
to give developers the ability to easily create Vaadin+Liferay projects
and visually compose Vaadin components and portlets for use within
Liferay.

Vaadin Control Panel for Liferay
The Vaadin Control Panel for Liferay gives portal administrators an
interface to maintain the portal-wide Vaadin resources. You can use
it to:

•	 Check and update the Vaadin libraries in portal

•	 Recompile the Vaadin widgetset when installing new
Vaadin Add-ons.

You can access the Control Panel in Liferay after logging in as an
administrator at Manage > Control Panel > Portal > Vaadin.

The latest version of the control panel is available at http://vaadin.
com/addon/vaadin-control-panel-for-liferay.

COMPOSING THE USER INTERFACE WITH VAADIN

With Vaadin, the user interface is built from user interface
components. They are server-side Java classes that implement a
single UI control such as a button, select, or a layout.

With layout components, you can compose larger components that
hierarchically build up the application UI.

Vaadin Application
A Vaadin application is defined in a class that extends the com.
vaadin.Application. This is the class that you should define as the
‘application’ init-param in portlet.xml as described in later sections.

A new instance of this class is created when a new user comes to
portal view where the portlet resides.

Here is the code for a minimal Vaadin application:

package org.vaadin.sample;

import com.vaadin.Application;

import com.vaadin.ui.Label;

import com.vaadin.ui.Window;

public class MyApplication extends Application {

 @Override

 public void init() {

 Window w = new Window();

 w.addComponent(new Label(“Hello Liferay!”));

 setMainWindow(w);

 }

}

Vaadin UI Components
Vaadin Framework includes over 60 stock components. You can find a
rapidly growing number of open-source and commercial add-on
components at http://vaadin.com/directory.

Furthermore, you can extend Vaadin by creating new components
with the Google Web Toolkit (GWT). GWT is an open-source Java-
to-JavaScript compiler that allows you to build client-side features
without JavaScript. See additional information at http://code.google.
com/webtoolkit/.

You can find all the components in the Java package com.vaadin.ui.
Add-ons may use their own package naming, but it is typical that they
start with org.vaadin.

TIP: You can test and try different Vaadin components online at http://
demo.vaadin.com/sampler. All the demos include source code and
documentation.

User Interface Layout
Start by creating a main Window for your application and putting the
initial content in there. The user interface structure is a hierarchy of
nested layouts and components. Here is an example of a simple user
interface hierarchy:
MyApplication

 Window

 VerticalLayout

 TextField

 TextField

 Button

The above UI could be created in Java as follows:
Window w = new Window(“Subscribe Newsletter”);

setMainWindow(w);

w.setContent(new VerticalLayout());

TextField name = new TextField(“Name”);

TextField email = new TextField(“Email”);

Button subscribeBtn = new Button(“Subscribe”);

w.addComponent(name);

w.addComponent(email);

w.addComponent(subscribeBtn);

TIP: You should avoid creating too deeply nested layout structures. In
particular, older browsers can become slow. Instead, use the
CustomLayout, GridLayout, or some lightweight layouts like the
CSSLayout.

User Interface Events
Vaadin is an event-based framework. You can receive user-triggered
events in your application by registering a listener for it. Here is an
example for Button.ClickEvent:

3 Mastering Portal UI Development With Vaadin and Liferay

DZone, Inc. | www.dzone.com

subscribeBtn.addListener(new Button.ClickListener() {

 @Override

 public void buttonClick(ClickEvent event) {

 // ...

 }

});

Event listeners are executed in the server side synchronously. You can
fetch data and update the user interface by adding and removing
components.

TIP: Good practice for event listeners is to only call your Java control
code and let them do the UI updates. This is better object-oriented
design, and it enhances readability of your Java code.

Vaadin Visual Editor
The visual editor is part of the Vaadin Plugin for Eclipse and is
available at http://vaadin.com/eclipse. It includes a WYSIWYG editor
for defining a CustomComponent; that is, UI composites in Vaadin.

The visual editor generates the Java code that you can continue to
modify and extend.

The visual editor runs inside the Eclipse IDE, giving developers a
quick way of creating user interface without writing the code itself.

To activate the visual editor, create a new component using the
Eclipse wizard: New > Vaadin CustomComponent (composite),
open the file with the right editor Open with > Vaadin Editor, and
choose “Design” tab.

Every time you save the file in the Design mode, the Vis ual Designer
generates the Java code that makes up the UI.

Note: The Visual editor works with the “reindeer” theme, but you can
change the theme in your Application class by calling the setTheme
method. For example:

myApplication.setTheme(“liferay”).

THEMING VAADIN APPLICATIONS

Vaadin is designed to support parallel work of application developers
and graphic designers by strongly separating the graphical elements
from the functionality.

All Vaadin applications have an associated theme. Themes are
essentially a collection of CSS and images that define the look and
feel of the Vaadin’s user interface components.

The following Vaadin themes are included in Liferay by default:

Theme Description

base Base theme for creating your own customized theme. Handles
most of the cross-browser issues.

liferay A Liferay 6 look-a-like theme. Use this to create applications
that match the Liferay 6 default styles.

reindeer Reindeer is default look and feel of Vaadin. It provides
minimalistic, but stylish look for business applications.

runo More colorful and rounded theme for web applications.

Structure of a Vaadin Theme
Vaadin themes are located in the themes folder of the portal. They
are a collection of CSS and images that give the Vaadin components
their look and feel.

The theme folder must contain the styles.css stylesheet, and custom
layouts must be placed in the layouts sub-folder. Other contents may
be named freely.

A typical Vaadin theme follows the structure under the theme folder:

Theme Description

styles.css The CSS for the whole theme.

layouts/ Directory for CustomLayout definition files.

<component>/ CSS definitions for a single UI component. Only used to split
the CSS for easier maintenance. These are compiled into
styles.css is as a single CSS file.

<component>/img/ Static image resources for the component.

Typically, you start to develop your theme by inheriting some existing
-theme:

@import url(../liferay/styles.css);

After that, you can apply the CSS rules that override the original
theme without completely rewriting a theme.

To activate the theme in your portlet, add the following to the init
method of your application:
public void init() {

 setTheme(“mytheme”);

 // ...

}

CSS Classnames in Vaadin
To maximize the use of theme inheritance and to help customize
components, the CSS class selectors in Vaadin are defined the
following scheme .v-<component|item>. All style names are
lowercase.

As an example, the following CSS rules change the color of all
captions and adds borders to all TextFields:

.v-caption {color: red;}

.v-textfield {border: 1px solid red;}

4 Mastering Portal UI Development With Vaadin and Liferay

DZone, Inc. | www.dzone.com

The most relevant CSS class names are:

Class Name Description

.v-app The top-level DIV container for the whole application.

.v-window Container for the application window.

.v-<component> Container for a specific component type. Note that captions
are managed outside the component, by the containing
Layout.

To avoid style leakage outside the Vaadin application, it is
recommended that you use the most specific CSS selector when
applying your own styles and limit them by using container, such as:

.v-app .v-caption {color: green; }

VAADIN PORTAL-WIDE SETTINGS

The core Vaadin Framework consists of a single jar file that includes
the framework itself along with the core components. This jar
along with the CSS themes and custom widgets are installed to the
portal itself, and they are shared by all Vaadin-based portlets. This
means that only a single version of Vaadin is supported in a portal
installation.

A Liferay 6 installation includes the following Vaadin-related files and
directories:

Class Name Description

vaadin.jar

(Java jar-file)

Vaadin Framework, portlet integration and core UI
components.

widgetsets/<name>/

(directory)

Client-side widgets of Vaadin. JavaScript compiled with
Google Web Toolkit (GWT). Must be publicly accessible.

theme/<theme name>/

(directory)

Collection of CSS and static images that define the look of the
Vaadin components. Must be publicly accessible.

<add-on>-<version>.jar

(Java jar-file)

An extension to Vaadin - new UI component, data-binding or
a theme. Standard jar file.

gwt-user.jar, gwt-dev.jar

(Java jar-files)

Google Web Toolkit libraries needed to re-compile the client-
side JavaScript if new components are imported.

Depending on the application server used, these files are installed in
different locations.

Tomcat 6.x Location

Global vaadin.jar ${TOMCAT_DIR}/webapps/ROOT/WEB-INF/lib

Vaadin Add-ons ${TOMCAT_DIR}/webapps/ROOT/WEB-INF/lib

Vaadin CSS Themes ${TOMCAT_DIR}/webapps/ROOT/html/VAADIN/themes

Vaadin Client-side Widgetset ${TOMCAT_DIR}/webapps/ROOT/html/VAADIN/widgetset

GWT jar-files (only needed
for compiling widgetset)

${TOMCAT_DIR}/webapps/ROOT/WEB-INF/vaadin/gwt

GlassFish 3.x Location

Global vaadin.jar ${GLASSFISH_DOMAIN_DIR}/applications/j2ee-modules/
Liferay-portal/WEB-INF/lib

Vaadin Add-ons ${GLASSFISH_DOMAIN_DIR}/applications/j2ee-modules/
Liferay-portal/WEB-INF/lib

Vaadin CSS Themes ${GLASSFISH_DOMAIN_DIR}/applications/j2ee-modules/
Liferay-portal/VAADIN/themes

Vaadin Client-side Widgetset ${GLASSFISH_DOMAIN_DIR}/applications/j2ee-modules/
Liferay-portal/VAADIN/widgetset

GWT jar-files (only needed
for compiling widgetset)

${GLASSFISH_DOMAIN_DIR}/applications/j2ee-modules/
Liferay-portal/WEB-INF/vaadin/gwt/

JBoss 5.x Location

Global vaadin.jar ${JBOSS_INSTANCE_DIR}/deploy/ROOT.war/WEB-INF/lib

Vaadin Add-ons ${JBOSS_INSTANCE_DIR}/deploy/ROOT.war/WEB-INF/lib

Vaadin CSS Themes ${JBOSS_INSTANCE_DIR}/deploy/ROOT.war/VAADIN/
themes

Vaadin Client-side Widgetset ${JBOSS_INSTANCE_DIR}/deploy/ROOT.war/VAADIN/
widgetsets/

GWT jar-files (only needed
for compiling widgetset)

${JBOSS_INSTANCE_DIR}/deploy/ROOT.war/WEB-INF/
vaadin/gwt

Liferay Portlet Setup
To use Vaadin in a Liferay portlet, the portlet has to be configured to
use Vaadin and optional add-on libraries by creating and/or editing
various configuration files.

Anatomy of a Portlet Project
Portlets (Vaadin and non-Vaadin) are built as Liferay plugins, which
can be compiled and hot-deployed into a Liferay environment. In
their source (uncompiled) form, there are several file and directory
structures used to manage the project.

Folder Description

WebContent/ (or docroot/) This folder is the “root” of your Vaadin portlet application

WEB-INF Standard WEB-INF folder for web applications. Also contains
Liferay-specific descriptors such as portlet.xml, liferay-portlet.
xml, and others.

WEB-INF/src Java source code for the Vaadin Portlet

build.xml ANT build script controlling building and deploying

liferay-display.xml Describes the category under which the portlet should appear
in the Liferay UI

liferay-plugin-package.
properties

Describes properties used by Liferay’s hot deploy mechanism,
most notably which Vaadin dependencies to include when
compiling the plugin.

liferay-portlet.xml Describes Liferay-specific portlet enhancements (akin to
portlet.xml for generic portlets). There are many settings here
to customize your portlet.

portlet.xml Standard JSR-168 or JSR-286 portlet descriptor, including
settings for performing non-Vaadin portlet IPC.

web.xml Standard Web Application descriptor. You should not need to
edit this for use with Vaadin.

Liferay Plugin Package Properties

The liferay-plugin-package.properties file defines a number of
settings for the portlet, most importantly the Vaadin Framework and
Vaadin Add-on jar-files to be used.

The following example of a dependency definition:

name=MyVaadinPortletName

module-group-id=vaadin

module-incremental-version=1

tags=

short-description=

change-log=

page-url=http://www.liferay.com

author=Your Company, Inc.

licenses=LGPL

portal-dependency-jars=\

 vaadin.jar,\

 paperstack-0.8.1.jar,\

 console-1.0.0.jar

The Vaadin-related portlet dependencies are highlighted. The

5 Developing Liferay User Interfaces with Vaadin

DZone, Inc. | www.dzone.com

vaadin.jar contains the framework itself. The other dependencies,
paperstack-0.8.1.jar and console-1.0.0.jar, are Vaadin add-ons used
by the portlet.

Refer to the application server setup to see where these jar
dependencies should be installed to work at compiletime and
runtime.

Portlet Descriptor
To wire the portlet to your Vaadin application class, configure portlet
mapping in the portlet.xml:

<portlet>

 <portlet-name>MyVaadinPortlet</portlet-name>

 <display-name>MyVaadinPortlet</display-name>

 <portlet-class>

 com.vaadin.terminal.gwt.server.ApplicationPortlet2

 </portlet-class>

 <init-param>

 <name>application</name>

 <value>org.vaadin.sample.MyApplication</value>

 </init-param>

</portlet>

Vaadin portlets always use the same portlet class, com.vaadin.
terminal.gwt.server.ApplicationPortlet2, and the actual application
is defined as an init-param.

Liferay Portlet Descriptor

Liferay also requires a liferay-portlet.xml descriptor file that defines
Liferay-specific parameters. In particular, Vaadin portlets must be
defined as “instanceable” but not as “ajaxable”:

<liferay-portlet-app>

 <portlet>

 <!-- Matches definition in portlet.xml. -->

 <!-- Note: Must not be the same as servlet name. -->

 <portlet-name>Portlet Example portlet</portlet-name>

 <instanceable>true</instanceable>

 <ajaxable>false</ajaxable>

 </portlet>

</liferay-portlet-app>

This is because Vaadin portlets handle the Ajax requests internally
without Liferay’s Ajax mechanisms.

Liferay Portlet Display Descriptor

The liferay-display.xml file defines the portlet category under
which portlets are located in the Add Application window in
Liferay. Without this definition, portlets will be organized under the
“Undefined” category.

The following puts the application in a new category called “Vaadin”:

<display>

 <category name=”Vaadin”>

 <portlet id=”MyVaadinExamplePortlet” />

 </category>

</display>

For more information on these and other optional descriptors, see
the Chapter 11.8 of the “Book of Vaadin” at http://vaadin.com/book
and refer to the Liferay Developer Guide at http://liferay.com/
documentation

INTER-PORTLET COMMUNICATION (IPC)

Liferay offers different IPC mechanisms to allow portlets

communicate with each other. The following table summarizes the
different IPC methods in Liferay:

Method Description

JSR 286 Portlet Events Standard portlet communication mechanism. Requires page
reload.

JavaScript Traditional client/server communication, using client-side
JavaScript, calling other portlets running in the same
page using Liferay's client-side JavaScript API: Liferay.
fire(eventName, data) Liferay.on(eventName, function, [scope])

Vaadin Addon for Liferay IPC Mechanism for sending and receiving events between Vaadin
and non-Vaadin portlets.

Custom Event Bus Direct client-side communication between portlets (e.g. using
OpenAjax Hub). No page refresh necessary, and no server
communication is required.

Ajax Push (Reverse Ajax) Typically used for server->client notifications (for example,
in-browser chat). Long-held connections are used to push
data from server to client, as needed, instead of separate
communications for each message.

IPC in Vaadin Portlets
Vaadin portlets are based on Ajax communication that is most useful
if the user never changes the page in the browser. In this scenario,
the application talks to the server frequently and only small user
interface updates are sent to the browser. This makes the best user
experience.

When communicating with other portlets in a portal, the different
scenarios may require different approaches to optimize the user
experience.

A Vaadin portlet sending an event to a non-Vaadin portlet.
Depending on the other portlet, this typically requires a page reload.
Below is an example of sending a “date” event to another portlet.

Configure an event definition in the portlet.xml:

 <event-definition>

 <qname xmlns:vaadin=”http://vaadin.com/portlet-
events”>vaadin:date</qname>

 <value-type>java.util.Date</value-type>

 </event-definition>

Send a portlet event from a Vaadin application:
((PortletApplicationContext2) getApplication().getContext())

 .sendPortletEvent(getMainWindow(),

 new QName(“http://vaadin.com/portlet-events”,
“date”),

(Date)dateField.getValue());

Receive an event in a non-Vaadin portlet:
Receiving an event in a non-Vaadin portlet:

public class MyPortlet extends GenericPortlet

 @Override

 public void processEvent(EventRequest request,

 EventResponse response)

 throws PortletException, IOException {

 Event e = request.getEvent();

 if (“date”.equals(e.getName())) {

 Date date = (Date) e.getValue();

 // ...

 }

 }

}

This style of IPC relies on server-side processing of the events and,
therefore, requires a page reload to see the effects of the event in the
non-Vaadin portlet.

Communicating with a Vaadin-based portlet using Ajax. In this

6 Developing Liferay User Interfaces with Vaadin

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2011 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOK

case, the full page request is not needed.

Note: This requires the Liferay IPC add-on to be installed in the
application. For more details and instructions, go to:
http://vaadin.com/addon/vaadin-ipc-for-liferay.

Receive an event in a Vaadin application/portlet:

LiferayIPC ipc = new LiferayIPC();

ipc.addListener(“uniqueEventId”, new LiferayIPCEventListener() {

 public void eventReceived(LiferayIPCEvent event) {

 // Process event here

 }

});

Send an event from another portlet using JavaScript:
LiferayIPC ipc = new LiferayIPC(); ipc.sendEvent(“uniqueEventId”,
“payloadData”);

Receive an event from a Vaadin application/portlet using JavaScript:
<script>

Liferay.on(“uniqueEventId”,

 function(event) {

 alert(event);

 }

);

</script>

Send an event from another portlet using JavaScript:

<script>

Liferay.fire(“uniqueEventId”, “someData”);

</script>

This method is not suitable for sending a large amount of data,
rather, it’s for notifying the portlet that something has updated. The
actual data should be shared using the database, files, or some
external storage.

Note: When sending events to non-Vaadin portlets that are ajax-
enabled (ajaxable set to true and render-weight < 1), be aware that
if a portlet takes some time to load, it might not receive the event in
the case that the event is sent before the portlet is fully initialized.

Further Information
For up-to-date and in-depth information, refer to the Liferay
official documentation for Liferay at www.liferay.com/ and Vaadin
documentation at vaadin.com/book/.

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over 100 Free Cheat Sheets
Upcoming Refcardz
NetBeans 7.0 Java Editor
MySQL 5.5
HTML 5 Canvas
Android

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

Sami Ekblad is one of the original authors of the Vaadin
framework. Working in web application development
since 1998, he now works as Partner Manager at Vaadin
Ltd to help professional web developers to get most

out of the Vaadin framework and tools. He holds B.Sc. degree in
Computer Science from the University of Turku.

James Falkner is an open-source evangelist, community
manager, and software developer working at Liferay,
producers of the world’s leading open source enterprise
portal. In addition to Liferay, James has been active in

a number of other open source products and projects, including
the GlassFish Enterprise portfolio, Community/Social Equity,
OpenSolaris, OASIS standards, and more. contributor and speaker at
industry events such as JavaOne, JAX, and others.

ABOUT THE AUTHOR

Liferay in Action is a comprehensive and authoritative guide
to building portals on the Liferay 6 platform. Fully supported
and authorized by Liferay, this book guides you smoothly from
your first exposure to Liferay through the crucial day-to-day
tasks of building and maintaining an enterprise portal that

works well within your existing IT infrastructure. The book starts with
the basics: setting up a development environment and creating a
working portal. Then, you’ll learn to build on that foundation with
social features, tagging, ratings, and more. As the book progresses,
you’ll explore the Portlet 2.0 API, and learn how to create your own
portlet applications.

