

DZone, Inc. | www.dzone.com

By Mike Keith

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 J

PA
 2

.0

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#127

CONTENTS INCLUDE:
n	 Whats New in JPA 2.0
n	 JDBC Properties
n	 Access Mode
n	 Mappings
n	 Shared Cache
n	 Additional API and more...

Getting Started with
 JPA 2.0

http://txt.couchware.com/medias/jump?hid=2531&cid=439&mid=755

DZone, Inc. | www.dzone.com

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#152
G

e
tt

in
g

 S
ta

rt
e

d
 w

it
h

 W
e

b
S

o
ck

e
t

By Peter Lubbers

Full-duplex, Real-time Web Communication

WHY WEBSOCKET?

Let’s take a look at how WebSocket can reduce unnecessary network
traffic and latency by comparing HTTP solutions to full-duplex “real time”
browser communication with WebSocket.

Normally, when a browser visits a web page, an HTTP request is sent
to the web server that hosts that page. The web server acknowledges
the request and sends back a response. In many cases—for example,
for stock prices, news reports, ticket sales, traffic patterns, and medical
device readings—the response may be stale by the time the browser
renders the page. If you want to get the most up-to-date real-time
information, you can continually refresh the page manually. But that’s
obviously not much of a solution.

Previous attempts to provide real-time web applications largely revolve
around polling, long polling, and other server-side push technologies,
commonly referred to as “Comet.” Ultimately, all of these methods for
providing real-time data involve HTTP request and response headers,
which contain lots of additional, unnecessary header data and introduce
latency.

On top of that, full-duplex connectivity requires more than just the
downstream connection from server to client. In an effort to simulate full-
duplex communication over half-duplex HTTP, many of today’s solutions
use two connections: one for the downstream and one for the upstream.
The maintenance and coordination of these two connections introduce
significant overhead in terms of resource consumption and add lots
of complexity. WebSocket gets you the most up-to-date and real-time
information since it is a new transport protocol for web applications that
provides a bi-directional stream of data that arrives in order, much like
TCP. As with TCP, higher-level protocols can run over WebSocket.

THE WEBSOCKET PROTOCOL

To establish a WebSocket connection, the client and server upgrade
from the HTTP protocol to the WebSocket protocol during their initial
handshake, as shown in Figure and Listing 1. Note that this connection
description represents the latest version of the protocol, as defined in
IETF RFC 6455.

Figure 1. WebSocket Upgrade handshake

Listing 1. Example WebSocket Upgrade handshake

From client to server:
GET /chat HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
Origin: http://example.com
Sec-WebSocket-Protocol: chat, superchat
Sec-WebSocket-Version: 13

From server to client:
HTTP/1.1 HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzz…

After the handshake, the client and server can send messages at any time.
The client and the server construct messages according to the WebSocket
protocol. The bytes preceding the data payload mark the frame length
and type. Text frames are UTF-8 encoded.

The data sent from the browser to the server is masked, which is an
unusual feature of the WebSocket protocol. Every byte of payload data
is XORed with a random mask to ensure that WebSocket traffic does
not look like other protocols. Like the Sec-WebSocket-Key hash, this
is meant to mitigate an arcane form of cross-protocol attack against a
non-compliant network infrastructure. Figure 2 shows an example of a
WebSocket frame.

CONTENTS INCLUDE:
n	 Why WebSocket?
n	 	The WebSocket Prototcol
n	 Using the WebsSocket API
n	 A New Class of Web Applications
n	 WebSocket in the Real World
n	 and More!

HTML5 WebSocket

This Refcard explores WebSocket, a revolutionary new communication feature in
the HTML5 specification, which defines a full-duplex communication channel that
operates over the Web through a single socket. WebSocket is not just another
incremental enhancement to conventional HTTP communications; it represents a
major advance, especially for real-time, event-driven web applications.

“Reducing kilobytes of data to 2 bytes… and reducing latency from 150ms to 50ms
is far more than marginal. In fact, these two factors alone are enough to make
WebSocket seriously interesting to Google.”
—Ian Hickson, HTML5 Specification Lead, Google (http://goo.gl/IAs6O)

Figure 2. Components of a WebSocket Frame

http://txt.couchware.com/medias/jump?hid=2533&cid=439&mid=757

2 WEBSOCKET

DZone, Inc. | www.dzone.com

Dramatic Reduction in Unnecessary Network Overhead
and Latency
Imagine performing a Yahoo! or Google search. As you type in a letter, an
Ajax request is fired off to the server for a list of suggested words that start
with that letter. An HTTP request may look like the one shown in Listing 2.

Listing 2. HTTP request headers

GET / HTTP/1.1
Host: example.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv:12.0a2) Gecko/20120218 Firefox/12.0a2
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip, deflate
Connection: keep-alive
Cookie: __utma=2… (add lots of characters here)
Cache-Control: max-age=0

The server then shoots back a response that looks like this:

Listing 3. HTTP response headers

HTTP/1.1 200 OK
Cache-Control: private, max-age=0
Content-Disposition: attachment
Content-Encoding: gzip
Content-Type: application/json; charset=UTF-8
Date: Wed, 22 Feb 2012 01:06:16 GMT
Expires: -1
Server: gws
x-frame-options: SAMEORIGIN
X-XSS-Protection: 1; mode=block
X-Firefox-Spdy: 1

Just for fun, let’s add up all the characters. The total HTTP request and
response header information overhead (not even including all the cookie
data!) contains 871 bytes—and that’s just the overhead. Of course, this is
just an example and there could be less than 871 bytes of header data…
but we also know that the header data commonly exceeds 2,000 bytes. So,
what happens when we deploy an application that makes frequent polling
HTTP requests for real-time updates to a large number of users? Let’s take
a look at the network overhead for just the HTTP request and the response
header data associated with this request in three different cases.

Figure 3 compares the dramatic reduction in unnecessary network traffic
that is obtained for the polling solution with 1,000, 10,000, and 100,000
concurrently connected clients and compares it to what that would look
like with WebSocket instead.

Figure 3. Comparison of unnecessary network overhead between polling
and WebSocket traffic

And what about the reduction in latency? Take a look at Figure 4. In the
top half, you see the latency of the half-duplex polling solution. If we
assume for this example that it takes 50 milliseconds for a message to
travel from server to browser, then the polling application introduces a lot
of extra latency because a new request has to be sent to the server when
the response is complete. This new request takes another 50ms, during
which the server cannot send any messages to the browser, which results
in additional server memory consumption.

In the bottom half of the figure, you see the reduction in latency provided
by the WebSocket solution. Once the connection is upgraded to
WebSocket, messages can flow from server to browser the moment they
arrive. It still takes 50 ms for messages to travel from server to browser,
but the WebSocket connection remains open, so there is no need to send
another request to the server.

	

Figure 4. Comparison between latency of polling and WebSocket
applications

WebSocket provides an enormous step forward in the scalability of the
real-time web. As we have just shown, WebSocket can provide a 500:1
or—depending on the size of the HTTP headers—even a 1000:1 reduction
in unnecessary HTTP header traffic and a 3:1 reduction in latency.

Websocket Servers
All of today’s widely used browsers already support WebSocket. For
details, see http://caniuse.com. To create a successful WebSocket
connection, however, you need a WebSocket-enabled server. Fortunately,
there are already lots of WebSocket server implementations out there and
even more under development. The following are just a few of the existing
WebSocket servers.

•	 Alchemy-Websockets (.NET) - http://alchemywebsockets.net/

•	 Apache ActiveMQ (Java) - http://activemq.apache.org/

•	 Apache-websocket (Apache module) - https://github.com/
disconnect/apache-websocket#readme

•	 APE Project (C) - http://www.ape-project.org/

•	 Autobahn (virtual appliance) - http://autobahn.ws/

•	 Caucho Resin (Java) - http://www.caucho.com/

•	 Cowboy - https://github.com/extend/cowboy

•	 Cramp (Ruby) - http://cramp.in/

•	 Diffusion (Commercial product) - http://www.pushtechnology.com/
home

•	 EM-WebSocket (Ruby) - https://github.com/igrigorik/em-websocket

•	 Extendible Web Socket Server (PHP) - https://github.com/wkjagt/
Extendible-Web-Socket-Server

•	 Gevent-websocket (Python) - http://www.gelens.org/code/gevent-
websocket/

3 WEBSOCKET

DZone, Inc. | www.dzone.com

•	 GlassFish (Java) - http://glassfish.java.net/

•	 Goliath (Ruby) - https://github.com/postrank-labs/goliath

•	 Jetty (Java) - http://jetty.codehaus.org/jetty/

•	 jWebsocket (Java) - http://jwebsocket.org/

•	 Kaazing WebSocket Gateway (Commercial product and cloud
service) - http://kaazing.com/

•	 libwebsockets (C) - http://git.warmcat.com/cgi-bin/cgit/
libwebsockets/

•	 Misultin (Erlang) - https://github.com/ostinelli/misultin

•	 net.websocket (Go) - code.google.com/p/go.net/websocket

•	 Netty (Java) - http://netty.io/

•	 Nugget (.NET) - http://nugget.codeplex.com/

•	 Orbited (Python) - http://labs.gameclosure.com/orbited2

•	 phpdaemon (PHP) - http://phpdaemon.net/

•	 Pusher (commercial cloud service) - http://pusher.com/

•	 pywebsockets (Python) - http://code.google.com/p/pywebsocket/

•	 RabbitMQ (Erlang) - https://github.com/videlalvaro/rabbitmq-
websockets

•	 Socket.io (Node.js) - http://socket.io/

•	 SockJS-node (Node) - https://github.com/sockjs/sockjs-node

•	 SuperWebSocket (.NET) - http://superwebsocket.codeplex.com/

•	 Tomcat (Java) - http://tomcat.apache.org/

•	 Tornado (python) - http://www.tornadoweb.org/

•	 txWebSocket (Python/Twisted) - https://github.com/rlotun/
txWebSocket

•	 vert.x (Java) - http://vertx.io/

•	 Watersprout (PHP) - http://spoutserver.com/

•	 web-socket-ruby (Ruby) - https://github.com/gimite/web-socket-
ruby

•	 Webbit (Java) - https://github.com/webbit/webbit

•	 WebSocket-Node (Node.js) - https://github.com/Worlize/
WebSocket-Node

•	 websockify (Python) - https://github.com/kanaka/websockify

•	 XSockets (.NET) - http://xsockets.net/

•	 Yaws (Erlang) - http://yaws.hyber.org/websockets.yaws

USING THE WEBSOCKET API

In this section, we’ll explore the use of WebSocket in more detail.

Checking for Browser Support
Before you use the WebSocket API, you need to make sure that the
browser supports it. This way, you can provide a message, prompting the
users of your application to upgrade to a more up-to-date browser. You
can use the following code to test for browser support:

Listing 4. Checking for browser support

if (window.WebSocket) {
 alert(“WebSocket is supported”);
} else {
 alert(“WebSocket is not supported”);
}

Listing 4 shows how a call to window.WebSocket returns the WebSocket
object if it exists or triggers a failure case if it does not. Figure 5 shows the
resulting message in Microsoft Internet Explorer 10, which does support
Webocket.

Figure 5. Resulting message in Microsoft Internet Explorer

Another way to see if your browser supports WebSocket is to use
the browser’s developer tools. Figure 5 shows how you can use the
WebSocket API from the debug console. You can also test to see if
WebSocket is supported there. If it is not, the window.WebSocket
command returns “undefined.”

	 Figure 6. WebSocket connectivity in Chrome Developer Tools’ Network
panel

In Google Chrome, you can also navigate to chrome://net-
internals/#sockets to get fine-grained information about all socket
connections as shown in Figure 6.

Figure 7. Socket internals page chrome://net-internals/#sockets

	

4 WEBSOCKET

DZone, Inc. | www.dzone.com

Creating a WebSocket object and Connecting to a
WebSocket Server

Using the WebSocket interface is quite straightforward. To connect to an
endpoint, just create a new WebSocket instance, providing the new object
with a URL that represents the endpoint to which you wish to connect.
You can use the ws:// and wss:// prefixes to indicate a WebSocket and a
WebSocket Secure connection, respectively.

url = “ws://localhost:8080/echo”;
w = new WebSocket(url)

When you make a WebSocket connection, you have the option of listing
the protocols your application can speak. The second argument to the
WebSocket constructor can be a string or array of strings with the names
of the subprotocols that your application understands and wishes to use
to communicate.

w = new WebSocket(url, protocol);

You can even list several protocols:

w = new WebSocket(url, [“proto1”, “proto2”]);

Hypothetically, proto1 and proto2 are well defined protocol names that
both the client and server can understand; they may even be registered
and standardized. The server will select a prefered protocol from the list.
When the socket opens, its protocol property will contain the protocol that
the server chooses.

onopen = function(e) {
 // determine which protocol the server selected
 log(e.target.protocol)
}

Adding Event Listeners

WebSocket programming follows an asynchronous programming model;
once you have an open socket, you simply wait for events. You don’t have
to actively poll the server anymore. You add callback functions to the
WebSocket object in order to listen for events.

A WebSocket object dispatches four events: open, message, close, and
error. The open event fires when a connection is established, the message
event when messages are received, the close event when the WebSocket
connection is closed, and the error event when an error occurs. The error
event fires in response to unexpected failure. As in most JavaScript APIs,
there are corresponding callbacks (onopen, onmessage, onclose, and
onerror) that are called when events are dispatched.

w.onopen = function() {
 console.log(“open”);
 w.send(“Connection open”);
}
w.onmessage = function(e) {
 console.log(e.data);
}
w.onclose = function(e) {
 console.log(“closed”);
}
w.onerror = function(e) {
 console.log(“error”);
}

Let’s take another look at this message handler. The data attribute on
the message event is a string if the WebSocket protocol message was
encoded as text. For binary messages, data can be either a Blob or an
ArrayBuffer, depending on the value of the WebSocket’s binaryType
property.

w.binaryType = “arraybuffer”;
w.onmessage = function(e) {
 // data can now be either a string or an ArrayBuffer
 console.log(e.data);
}

Sending Messages

While the socket is open (that is, after the onopen listener is called and
before the onclose listener is called), you can use the send function to
send messages. After sending one or more messages, you can also call
close to terminate the connection or you can leave the connection open.

document.getElementById(“sendButton”).onclick = function() {
 w.send(document.getElementById(“inputMessage”).value);
}

In more advanced uses of WebSocket, you may want to measure how
much data is backed up in the outgoing buffer before calling send(). The
bufferedAmount attribute represents the number of bytes that have been sent
on the WebSocket that have not yet been written onto the network. This could
be useful for throttling the rate at which the application sends data.

document.getElementById(“sendButton”).onclick = function() {
 if (w.bufferedAmount < bufferThreshold) {
 w.send(document.getElementById(“inputMessage”).value);
 }
}

In addition to strings, WebSocket can also send binary data. This is
especially useful when you want to implement binary protocols, such
as the standard Internet protocols that are typically layered on top of
TCP. The WebSocket API supports the sending of Blob and ArrayBuffer
instances as binary data.

var a = new Uint8Array([8,6,7,5,3,0,9]);
w.send(a.buffer);

A NEW CLASS OF WEB APPLICATIONS

Now that you have a socket connection in your browser, you can do
lots of things that were not previously possible in a browser. In fact, the
first line in the WebSocket API specification defines WebSocket as an
“API that enables Web pages to use the WebSocket protocol for two-
way communication with a remote host”. Combine the powerful socket
connectivity over standard web ports with other HTML5 features such as
canvas and SVG for visualization of the WebSocket data, local storage,
and offline capabilities, and you can create web applications that are on
par with desktop applications with the added benefit that they don’t have
to open non-standard ports to communicate to a backend server.

A common approach is to use some JSON format over WebSocket. But
once you start writing your own syntax for how traffic should flow over the
wire, you should consider using existing protocols. For example, you may
want to use include Extensible Messaging and Presence Protocol (XMPP
or Jabber), Advanced Message Queuing Protocol (AMQP), Remote Frame
Buffer (RFB, or VNC), and Streaming Text Oriented Messaging Protocol
(STOMP).

These are real-world protocols that are in use by many desktop clients and
servers. Using a standard protocol ensures that there is interoperability
between web applications and servers from different organizations
(protocols are programming-language agnostic). It also opens the door
for public WebSocket services. You can speak to a server using a known
protocol. Client applications that understand the same protocol can
then connect and participate. There are already quite a few WebSocket-
based protocol implementations available, and we expect to see many
more over time. Some examples are stomp-websocket, a JavaScript
implementation of STOMP (http://jmesnil.net/stomp-websocket/doc/)
and a proposed draft of XMPP over WebSocket (http://tools.ietf.org/html/
draft-moffitt-xmpp-over-websocket-00).

Traditional web pages, shown in Figure 8, are usually assembled on
the server side and pushed out as static, stateless content to the client.
Conversely, modern web apps, shown in Figure 9, can behave more
like client-server applications in which the browser first requests the
static resources for the web page from an HTTP server (or a network
edge caching server), then makes stateful WebSocket-based backend
connections.

5 WEBSOCKET

DZone, Inc. | www.dzone.com

Figure 8. Traditional web apps generated server-side available for the
viewer

Figure 9. HTML5 client-side generated web app

Architectures like this are often achieved by using some sort of higher-
level protocol, which in turn enable HTML5 web apps to rapidly become
first class network citizens.

WEBSOCKET IN THE REAL WORLD

What happens with WebSocket connectivity in the real world—when
you move away from localhost tests and proof of concepts? This section
will cover what happens when a WebSocket connection traverses
intermediaries on the network and what can be done to make WebSocket
work in older browsers.

Transparent Proxy Servers
Real-world WebSocket traffic will flow through proxy servers. Figure
10 shows a simplified network topology in which clients use a browser
to access back-end TCP-based services using a full-duplex HTML5
WebSocket connection. Some clients are located inside a corporate
network that’s protected by a corporate firewall and configured to access
the Internet through explicit or known proxy servers, which may also
provide content caching and security. Other clients access the WebSocket
server directly over the Internet. In both cases, the client requests may
be routed through transparent, or unknown, proxy servers (for example,
a proxy server in a data center or a reverse proxy server in front of the
remote server). It is even possible for proxy servers to have their own
explicit proxy servers, which increases the number of hops the WebSocket
traffic has to make.

Figure 10. WebSocket architecture with explicit and transparent proxy
servers

If a browser is configured to use an explicit proxy server, it will first issue
the HTTP CONNECT method to that proxy server while establishing the
WebSocket connection. For example, to connect to the server example.
com using the ws:// scheme (typically over port 80), the browser client
sends the HTTP CONNECT method to the proxy server as follows:

CONNECT example.com:80 HTTP/1.1
Host: example.com

When the explicit proxy server allows the CONNECT method, the
WebSocket connection upgrade handshake can be made. When that
handshake succeeds, WebSocket traffic can begin to flow unimpeded
through the proxy server.

In the case that the unencrypted WebSocket traffic flows through a
transparent proxy on its way to the WebSocket server, the connection is
likely to fail in practice since the browser will not issue the CONNECT
method. When a proxy server forwards a request to the (WebSocket)
server, it is expected to strip off certain headers, including the Connection
header. Therefore, a well behaved transparent proxy server will cause the
WebSocket upgrade handshake to fail almost immediately.

Not all proxy servers conform to the HTTP standard in terms of expected
proxy behavior. For example, some proxy servers are configured such
that they do not remove the Connection: Upgrade header ; instead, they
pass it on to the WebSocket server, which in turn sends the 101 Switching
Protocols response. Problems then arise when the client or the server
begins sending the first WebSocket frame. Since the frame does not
resemble anything the proxy server might expect (such as regular HTTP
traffic), some form of rejection or hiccup will likely occur unless the proxy
server is specifically configured to handle WebSocket traffic.

Fortunately, there is a solution to this problem. You can use WebSocket
Secure (wss:// scheme), which will first establish an end-to-end encrypted
tunnel. With the wire traffic now encrypted, intermediate transparent
proxy servers will simply allow the encrypted traffic through, so there is
every likelihood that the WebSocket connection will succeed. Therefore, it
is always best to use WebSocket Secure using TLS (a.k.a. SSL) encryption
to connect to a WebSocket server unless you’re absolutely certain there
are no intermediaries. While TLS encryption has the added benefit of
being more secure, it does increase CPU consumption for both the client
and the server, though usually not to a dramatic degree. With hardware
TLS acceleration, you can reduce CPU consumption to near zero on the
server side.

6 WEBSOCKET

DZone, Inc.
150 Preston Executive Dr.
Suite 200
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2011 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOK

WHAT ABOUT BROWSERS THAT DO NOT SUPPORT
WEBSOCKET?
WebSocket is now supported by all of today’s widely used browsers,
but what if you have to support an old version of Internet Explorer or a
version of a mobile browser that does not support WebSocket? There is
good news here. There are quite a few polyfills (libraries that emulate the
WebSocket API in browsers that do not have native support). Here are a
few of these polyfills:

•	 Kaazing WebSocket Gateway—pure JavaScript polyfill as far
 back as I.E. 6

•	 Socket.IO—works with Node.js

•	 WebSocket.JS—Flash based library (Note: using Flash-based
 emulation for encrypted WebSocket requires opening an
 extra port for the policy file, and Flash has some known proxy
 poisoning-attack issues)

Additional Resources

•	 WebSocket API (W3C): http://dev.w3.org/html5/websockets/

•	 WebSocket Protocol (IETF): http://tools.ietf.org/html/rfc6455

•	 WebSocket test server: http://www.websocket.org

•	 How HTML5 WebSockets Interact with Proxy Servers: http://
 www.infoq.com/articles/Web-Sockets-Proxy-Servers

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over Free Cheat Sheets
Upcoming Refcardz

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

Peter Lubbers (@peterlubbers) lives
and breathes HTML5. Even his car has
the California ‘HTML5’ license plate.
Peter is the co-author of Pro HTML5
Programming (Apress, 2011) and the co-
founder of the San Francisco HTML5 User
Group, the largest HTML5 User Group
in the world. Peter oversees all aspects

of documentation and global training at Kaazing, a start-up
company specialized in building a high-performance HTML5
WebSocket platform that revolutionizes web communication
and the first company to offer HTML5 training worldwide.

Pro HTML 5 Programming

HTML5 is here, and with it, web applications have
acquired power, ease, scalability, and responsiveness like
never before. With this book, developers will learn how
to use the latest cutting-edge HTML5 web technology—
available in the most recent versions of modern
browsers—to build web applications with unparalleled
functionality, speed, and responsiveness.

150

Scala Collections
JavaFX 2.0
Android
Data Warehousing

	

ABOUT THE AUTHOR

