

DZone, Inc. | www.dzone.com

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#154
C

o
re

 J
e

tt
y

By Jos Dirksen
A Lightweight, Open-Source Web Server and Servlet Container

ABOUT JETTY

Jetty, an open-source web server hosted by the Eclipse foundation,
is a full-fledged HTTP server and Servlet container that can be easily
configured to serve static and dynamic content. You can very easily
embed Jetty into your own applications using Java or XML-based
configuration or run Jetty directly from Maven. Additionally, you can use
Jetty in many different high-demand areas such as Yahoo Hadoop Cluster,
Google AppEngine, and Yahoo! Zimbra.
This RefCard refers primarily to Jetty 8; however, most of the configuration
discussed will work on Jetty 7.

JETTY ARCHITECTURE

It’s important to understand the architecture behind Jetty. The main
architecture of Jetty consists out of the following four components.

Server
The server is the container class for all the other components of the
architecture. A server contains a number of connectors that listen on a
specific port and accepts connections (e.g., HTTP, HTTPS, or AJP13) from
clients. A server also contains a set of handlers that process the client
requests from the connectors and produce responses that are returned
to the client. Threads retrieved from the configured threadpool do this
processing.

Connector
Jetty provides a number of connectors that accept requests from clients
to be processed by the handlers. Jetty comes with the following set of
default connectors.

Connector Description and Usage

SocketConnector Uses blocking IO and normal JRE sockets. One
thread is allocated per connection. Only use
when NIO connector isn’t available.

BlockingChannelConnector Uses NIO buffers with a blocking thread model.
One thread is allocated per connection. Use
when there are few very active connections.

SelectChannelConnector Uses NIO buffers with a non-blocking threading
model. Threads are only allocated to connec-
tions with requests. Use when there are many
connections that have idle periods.

SslSocketConnector SSL version of the SocketConnector

SslSelectChannelConnector SSL version of the SelectChannelConnector

AJPConnector Use for connections from Apache modules:
mod_proxy_ajp and mod_jk.

HTTPSPDYServerConnector Supports the SPDY protocol and performs SPDY
to HTTP conversion. If SPDY is not negotiated,
falls back to HTTPS.

Handler
The handler is the component that deals with requests received by a
connector. There are three types of handlers in Jetty.

•	 Coordinating handlers route requests to other handlers.

•	 Filtering handlers modify a request and pass it on to other 		
handlers.

•	 Generating handlers create content.
	
•	 Jetty provides the following handlers.

Name Description

ConnectHandler Implements a tunneling proxy that supports HTTP CONNECT.

DebugHandler Writes details of the request and response to an outputstream.

GzipHandler Will gzip the response

IPAccessHandler Provides access control using white/black lists on IP addresses
and URLs.

RequestLogHandler Allows logging of requests to a request log.

ResourceHandler Serves static content and handles If-Modified-Since headers.
Doesn’t handle 404 errors.

RewriteHandler Allows you to rewrite the URL, cookies, headers, and status
codes based on a set of rules.

CONTENTS INCLUDE:
n	 Jetty Architecture
n	 �Configuring Jetty
n	 Basic Usage
n	 Advanced Usage
n	 Using with Web Frameworks
n	 Running Standalone
n	 Integration with Maven and more...

Jetty

2 Jetty

DZone, Inc. | www.dzone.com

ConstraintSecurity-
Handler

Enforces security constraints based on Servlet specification 2.4.

StatisticsHandler Collects statistics on requests and responses.

WebSocketHandler Provides support for the websockets protocol.

HandlerCollection Contains a collection of handlers. Handlers are called in order.

ContextHandlerCol-
lection

Contains a collection of handlers. Handlers are called based on
the provided context and virtual host.

HandlerList Like HandlerCollection, but calls each handler in turn until an
exception is thrown, the response is committed, or a positive
status is set.

ServletHandler Maps requests to servlets that implement the HttpServlet API.

ServletContextHan-
dler

See ServletHandler. Allows you to specify the context the servlet
is mapped to.

DefaultHandler Deals with unhandeld requests from the server.

WebAppContext Can be used to map requests to a web application (WAR).

Threadpool
The threadpool provides threads to the handlers, the work done by the
connnectors and the handlers. Jetty comes with the following threadpools.

Name Description

ExecutorThreadPool Uses the standard Java ThreadPoolExecutor to execute jobs.

QueuedThreadPool Uses a blocking queue to execute jobs.

CONFIGURING JETTY

When you configure Jetty, you create and configure a set of connectors
and handlers. You can do this using XML or plain Java.

XML configuration
Jetty provides an XML-based configuration language based on the Java
Reflection API. When starting Jetty with an XML configuration, Jetty will
parse this XML and create and configure the specified objects.

The following is a basic configuration using the XML syntax with a server,
connector, handler, and threadpool.

<Configure id=”Server” class=”org.eclipse.jetty.server.Server”>
 <Set name=”threadPool”>
 <New class=”org.eclipse.jetty.util.thread.QueuedThreadPool”>
 <Set name=”minThreads”>10</Set>
 <Set name=”maxThreads”>10</Set>
 </New>
 </Set>
 <Call name=”addConnector”>
 <Arg>
 <New class=”org.eclipse.jetty.server.nio.SelectChannelConnector”>
 <Set name=”port”>8080</Set>
 </New>
 </Arg>
 </Call
 <Set name=”handler”>
 <New class=”org.eclipse.jetty.server.handler.HandlerList”>
 <Set name=”handlers”>
 <Array type=”org.eclipse.jetty.server.Handler”>
 <Item>
 <New class=”org.eclipse.jetty.server.handler.ResourceHandler”>
 <Set name=”directoryListed”>true</Set>
 <Set name=”resourceBase”>./files</Set>
 </New>
 </Item>
 <Item>
 <New class=”org.eclipse.jetty.server.handler.DefaultHandler”/>
 </Item>
 </Array>
 </Set>
 </New>
 </Set>

This code creates a ResourceHandler that shows the files from the “./files”
directory. The DefaultHandler takes care of the unhandled request. You
can start this server using the following Java code:

Public class JettyExample {
 public static void main(String[] args) throws Exception {
 Resource fileCfg = Resource.newSystemResource(“example.xml”);
 XMLConfiguration config = new
 XMLConfiguration(fileCfg.getInputStream());
 Server.start();
 Server.join();
 }
}

The following elements can be used to configure Jetty.

XML Element Description

Configure The root element that specifies the class to be configured.
Attribute “id”: reference to created object.
Attribute “class”: FQN to instantiate.
Can contain: <Set>, <Get>, <Put>, <Call>, <New>, <Ref>, <Array>,
<Map>, <Property>

Set Maps to a call to a setter method.
Attribute “name”: Setter to call
Attribute “type”: Type of argument
Attribute “class”: if present, make a static call to the specified class.
Can contain: <Get>, <Call>, <New>, <Ref>, <Array>, <Map>, <Sys-
temProperty>, <Property>

Get Maps a call to a getter method.
Attribute “name”: getter to call
Attribute “class”: if present, make a static call to the specified class.
Attribute “id”: reference to returned object
Can contain: <Set>, <Get>, <Put>, <Call>, <New>, <Ref>, <Array>,
<Map>, <Property>

Put Calls the put method on the current object that should implement
Map.
Attribute “name”: used as put key
Attribute “type”: force type of value
Can contain: <Get>, <Call>, <New>, <Ref>, <Array>, <Map>, <Sys-
temProperty>, <Property>

Call Makes an arbitrary call to the current object.
Attribute “name”: method to call
Attribute “class”: if present, make a static call to the specified class.
Attribute “id”: reference to returned object
Can contain: <Arg>, <Set>, <Get>, <Put>, <Call>, <New>, <Ref>,
<Array>, <Map>, <Property>

Arg Specifies an argument for <Call> and <New>
Attribute “type”: force type of value
Can contain: <Get>, <Call>, <New>, <Ref>, <Array>, <Map>, <Sys-
temProperty>, <Property>

New Instantiates a new object.
Attribute “id”: reference to created object.
Attribute “class”: FQN to instantiate.
Can contain: <Arg>, <Set>, <Get>, <Put>, <Call>, <New>, <Ref>,
<Array>, <Map>, <Property>

Ref References a previously created Object.
Attribute “id”: the object to reference to.
Can contain: <Set>, <Get>, <Put>, <Call>, <New>, <Ref>, <Array>,
<Map>, <Property>

Array Allows creation of new array.
Attribute “type”: the type of array.
Attribute “id”: reference to the created array Can contain: <Item>

Item Defines an entry for an Array or Map element.
Attribute “type”: force the type of the item
Attribute “id”: reference to the created item.
Can contain: <Get>, <Call>, <New>, <Ref>, <Array>, <Map>, <Sys-
temProperty>, <Property>

Map Allows creation new new HashMap.
Attribute “id”: reference to the created map.
Can contain: <Entry>

Entry Contains a key-value <Item> pair
Can contain: <Item>

SystemProperty Gets the value of a JVM system property.
Attribute “name”: the name of the property
Attribute “default”: default value as fallback
Attribute “id”: reference to the created object
Can contain: nothing

Property Allows arbitrary properties to be retrieved by name.
Attribute “name”: the name of the property
Attribute “default”: default value as fallback
Attribute “id”: reference to the created object
Can contain: <Set>, <Get>, <Put>, <Call>, <New>, <Ref>, <Array>,
<Map>, <Property>

3 Jetty

DZone, Inc. | www.dzone.com

Java configuration
Using Java for the configuration of your Jetty server is very simple and
is done in the same manner as we’ve shown for the XML configuration.
Instead of using the XML elements to instantiate the objects, you can now
do this directly from Java. You can rewrite the previous XML configuration
to the following piece of Java.

public static void main(String[] args) throws Exception {
 Server server = new Server();
		
 QueuedThreadPool pool = new QueuedThreadPool();
 pool.setMinThreads(10);
 pool.setMaxThreads(10);
 server.setThreadPool(pool);
		
 SelectChannelConnector connector = new SelectChannelConnector();
 connector.setPort(8080);
 server.addConnector(connector);
		
 HandlerList handlers = new HandlerList();
 ResourceHandler resourceHandler = new ResourceHandler();
 resourceHandler.setDirectoriesListed(true);
 resourceHandler.setResourceBase(“./files”);
 DefaultHandler defaultHandler = new DefaultHandler();	
 handlers.setHandlers(new Handler[]
 {resourceHandler, defaultHandler});
 server.setHandler(handlers);
		
 server.start();
 server.join();
}

Hot
Tip

Since Jetty components are simple POJOs, you can also use your
dependency injection framework of choice to set up the Jetty server.
An example with Spring is shown here: http://wiki.eclipse.org/Jetty/
Howto/Spring

BASIC USAGE

This section describes how to use Jetty for a number of basic use cases.

Serving static content

When running Jetty as an embedded web server in your own application,
it can be useful to be able to serve static content (e.g., documentation).
The easiest way to server static content is by using a ResourceHandler:

<New class=”org.eclipse.jetty.server.handler.ResourceHandler”>
 <Set name=”directoryListed”>true</Set>
 <Set name=”resourceBase”>./files</Set>
</New>

The ResourceHandler can be configured with the following properties:

Property Description

aliases Boolean; if true symlinks are followed.

directoryListed Boolean; if true show directory listings.

welcomeFiles String[]; a welcome file is shown for a directory if it matches an
item from the supplied String[].

resourceBase String: The path from where to serve content.

If you want the ResourceHandler to listen on a specific context, you can
wrap this Handler in a ContextHandler:

<New class=”org.eclipse.jetty.server.handler.ContextHandler”>
 <Set name=”contextPath”>/documentation</Set>
 <Set name=”handler”>
 <New class=”...ResourceHandler”>...</New>
 </Set>
</New>

SSL configuration
To configure Jetty to use HTTPS, you can use one of the SSL-enabled
connectors: SslSelectChannelConnector or SSLSocketConnector. The
following listing defines two-way ssl (client authentication):

Call name=”addConnector”>
 <Arg>
 <New class=”org.eclipse...SslSelectChannelConnector”>
 <Arg>
 <New class=”org.eclipse.jetty.http.ssl.SslContextFactory”>
 <Set name=”keyStore”>etc/keystore</Set>
 <Set name=”keyStorePassword”>OBF:1vny1zlo1x8e1vnw1</Set>
 <Set name=”keyManagerPassword”>OBF:1u2u1wml1z7s1z/Set>
 <Set name=”trustStore”>/etc/keystore</Set>
 <Set name=”trustStorePassword”>OBF:w11x8g1zlu1vn4</Set>
 <Set name=”needClientAuth”>true</Set>
 </New>
 </Arg>
 <Set name=”port”>8443</Set>
 </New>
 </Arg>
</Call>

The following properties are used:

Property Description

keystore Keystore for the server keypair

keystorepassword Password for the keystore

keymanagerpassword Password for the private key

truststore Keystore for trusted certificates

truststorepassword Password for truststore

needClientAuth True, if clients must use a certificate

There are more advanced properties available. For these, see the
Javadocs for the SslContextFactory.

Hot
Tip

Jetty provides a utility that you can use to secure passwords in
configuration files. By using the org.eclipse.jetty.http.security.Passwd
class, you can generate obfuscated, checksummed, and encrypted
passwords.

Servlets and the ServletContextHandler
Jetty allows you to easily configure servlets without having to use a web.
xml. To do this, you can use a ServletContextHandler, which allows for easy
construction of a context with a ServletHandler. The following properties
can be set on a ServletContextHandler.

Property Description

contextPath The base context path used for this ServletContextHandler.

allowNullPathInfo If “false”, then /context is redirected to /context/.

compactPath If “true”, replace multiple ‘/’s with a single ‘/’.

errorHandler An “ErrorHandler” determines how error pages are handled.

securityHandler The “SecurityHandler” to use for this ServletContextHandler.

sessionHandler The “SessionHandler” to use for this ServletContextHandler

welcomeFiles List of welcomeFiles to show for this context.

A servlet on this context can be added using the addServlet operation
(which can also be done through XML).

addServlet(String className,String pathSpec)
addServlet(Class<? extends Servlet> servlet,String pathSpec)
addServlet(ServletHolder servlet,String pathSpec)

Using existing WAR files and layout
Jetty allows you to directly use existing WAR files (and exploded WAR
files) through the WebAppContext. This is especially useful during
development.

4 Jetty

DZone, Inc. | www.dzone.com

Directly from a WAR:
Server server = new Server(8080);
 WebAppContext webapp = new WebAppContext();
 webapp.setContextPath(“/”);
 webapp.setWar(jetty_home+”/webapps/test.war”);
 server.setHandler(webapp);

From an exploded WAR (e.g. during development):
 Server server = new Server(8080);
 WebAppContext context = new WebAppContext();
 context.setDescriptor(webapp+”/WEB-INF/web.xml”);
 context.setResourceBase(“../test-jetty-webapp/src/main/webapp”);
 context.setContextPath(“/”);
 context.setParentLoaderPriority(true);
 server.setHandler(context);

You can also configure a WebAppContext in jetty.xml using the XML-
based configuration or in a context.xml file.	

Security Realms
Security Realms allow you to protect your web applications. Jetty provides
a number of standard LoginServices you can use to secure your web
application.

Name Description

HashLoginService A simple implementation that stores users and roles in memory
and loads them from a properties file.

JDBCLoginService Retrieves users and roles from a database configured with JDBC.

DataSourceLogin-
Service

Retrieves users and roles from a Javax.sql.DataSource.

JAASLoginService Delegates the login to JAAS. Jetty provides the following JAAS
modules:

• DBCLoginModule
• PropertyFileLoginModule
• DataSourceLoginModule
• LdapLoginModule

To use a LoginServices, you configure it in the jetty.xml file.

<Call name=”addBean”>
 <Arg>
 <New class=”org.eclipse.jetty.security.HashLoginService”>
 <Set name=”name”>RefCardRealm</Set>
 <Set name=”config”>etc/realm.properties</Set>
 <Set name=”refreshInterval”>0</Set>
 </New>
 </Arg>
 </Call>

The real-name defined in the jetty.xml can now be referenced from the
web.xml.

<login-config>
 <auth-method>FORM</auth-method>
 <realm-name>RefCardRealm</realm-name>
 <form-login-config>
 <form-login-page>/login/login</form-login-page>
 <form-error-page>/login/error</form-error-page>
 </form-login-config>
</login-config>

JNDI usage
Jetty has support for Java:comp/env lookups in web applications.

Setup JNDI
The JNDI feature isn’t enabled by default. To enable JNDI, you have
to set the following configurationClasses on your WebAppContext or
WebAppDeployer:

Configure id=”wac” class=”org.eclipse.jetty.webapp.WebAppContext”>
 <Array id=”plusConfig” type=”java.lang.String”>
 <Item>org.eclipse.jetty.webapp.WebInfConfiguration</Item>
 <Item>org.eclipse.jetty.webapp.WebXmlConfiguration</Item>
 <Item>org.eclipse.jetty.webapp.MetaInfConfiguration</Item>
 <Item>org.eclipse.jetty.webapp.FragmentConfiguration</Item>
 <Item>org.eclipse.jetty.plus.webapp.EnvConfiguration</Item>
 <Item>org.eclipse.jetty.plus.webapp.PlusConfiguration</Item>
 <Item>org.eclipse.jetty.webapp.JettyWebXmlConfiguration</Item>
 <!-- next one not needed for Jetty 8 -->
 <Item>org.eclipse.jetty.webapp.TagLibConfiguration</Item>
 </Array>
 <Set name=”war”>location/of/webapp</Set>
 <Set name=”configurationClasses”><Ref id=”plusConfig”/></Set>
</Configure>

You can now use <env-entry/>, <resource-ref/>, and <resource-env-ref/>
entries in your web.xml to point to resources stored in the JNDI context.

Binding objects to JNDI
Jetty allows you to bind POJOs, a java.naming.Reference instance, an
implementation of Java.naming.Referenceable, and a link between a
name in the web.xml and one of these other objects. These objects can
be configured from Java or in the jetty.xml configuration files.

<New class=type of naming entry>
 <Arg>scope</Arg>
 <Arg>name to bind as</Arg>
 <Arg>the object to bind</Arg>
</New>

 	
The scope defines where the object is visible. If left empty, the scope is set
to the Configure context this entry is defined in. This scope can also be set
to point to a specific server of webapplication.

<Arg><Ref id=’wac’/></Arg>

The following environment types are supported:

Type How to bind from Jetty

env-entry <New class=”org.eclipse.jetty.plus.jndi.EnvEntry”>
 <Arg></Arg>
 <Arg>mySpecialValue</Arg>
 <Arg type=”java.lang.Integer”>4000</Arg>
 <!—set to true to override web.xml -->
 <Arg type=”boolean”>true</Arg>
</New>

resource-ref resource-
env-ref

<New id=”myds” class=”org.eclipse.jetty.plus.jndi.Resource”>
 <Arg><Ref id=”wac”/></Arg>
 <Arg>jdbc/myds</Arg>
 <Arg>
 <New class=”org...EmbeddedDataSource”>
 <Set name=”DatabaseName”>test</Set>
 <Set name=”createDatabase”>create</Set>
 </New>
 </Arg>
</New>

Link With a Link you can link a resource from the web.xml to a
resource in the containter context.
<New id=”map1” class=”org.eclipse.jetty.plus.jndi.Link”>
 <Arg><Ref id=’wac’/></Arg>
 <Arg>jdbc/datasourceInWeb</Arg>
 <Arg>jdbc/nameInContainer</Arg>
</New>

Jetty-env.xml
You can store environment settings in a jetty.xml file that is stored in your
WEB-INF directory.

<Configure class=”org.mortbay.jetty.webapp.WebAppContext”>
 <!-- Add entries only valid for this webapp -->
</Configure>

ADVANCED USAGE

This section describes a couple of advanced configurations for Jetty.

Integration with CDI
When creating applications, it’s very useful to use context and
dependency injection (CDI). With JEE6, this is a standard feature of
an application server. You can also use CDI with Jetty. The following
configuration can be used to configure Weld (the CDI reference
implementation) for a specific web application on Jetty.

5 Jetty

DZone, Inc. | www.dzone.com

<Configure id=”webAppCtx”
 class=”org.eclipse.jetty.webapp.WebAppContext”>
 <New id=”BManager” class=”org.eclipse.jetty.plus.jndi.Resource”>
 <Arg><Ref id=”webAppCtx”/></Arg>
 <Arg>BeanManager</Arg>
 <Arg>
 <New class=”javax.naming.Reference”>
 <Arg>javax.enterprise.inject.spi.BeanManager</Arg>
 <Arg>org.jboss.weld.resources.ManagerObjectFactory</Arg>
 <Arg/>
 </New>
 </Arg>
 </New>
</Configure>

The beanmanager is available on java:comp/env/BeanManager.

Running Jetty behind a reverse proxy
Jetty can be configured to run behind a reverse proxy, such as Apache
with mod_proxy or mod_proxy_ajp. The preferred way is to use mod_
proxy with a normal HTTP connector. However, it’s also possible to create
a connector for the AJP protocol used by the mod_proxy_ajp modules.

<Call name=”addConnector”>
 <Arg>
 <New class=”org.eclipse.jetty.ajp.Ajp13SocketConnector”>
 <Set name=”port”>8009</Set>
 </New>
 </Arg>
 </Call>

For more information on running Jetty as a reverse proxy, see: http://
wiki.eclipse.org/Jetty/Howto/Configure_mod_proxy

Websockets
Jetty has support for websockets. You can create your own websockets
servlet by extending WebSocketServlet.

public class ExampleWSServlet extends WebSocketServlet {

 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException ,IOException {
 getServletContext().getNamedDispatcher(“default”)
 .forward(request,response);
 }

 protected WebSocket doWebSocketConnect(
 HttpServletRequest request, String protocol) {
 return new ExampleWebSocket();
 }

 class ExampleWebSocket implements WebSocket {
 private Outbound outbound;

 public void onConnect(Outbound outbound) {
 this.outbound=outbound;
 }

 public void onMessage(byte frame
 ,byte[] data,int offset, int length) {
 // handle binary data
 }

 public void onMessage(byte frame, String data) {
 // handle String data
 }

 public void onDisconnect() {}
 }
}

Session clustering
Jetty uses two components for session management. First, a session
ID manager ensures that the session IDs are unique across all web
applications. Second, a session manager handles the session lifecycle.
If you want to cluster your sessions, Jetty provides a JDBC-based
SessionIDManager and SessionManager.

Configure the JDBCSessionIdManager:

JDBCSessionIdManager idMgr = new JDBCSessionIdManager(server); idMgr.setWorkerName(“fred”); idMgr.
setDriverInfo(“com.mysql.jdbc.Driver”, “jdbc:mysql://127.0.0.1:3306/sessions?user=janb”); idMgr.setScavengeInterval(60);
server.setSessionIdManager(idMgr);

This JDBCSessionIdManager needs to be configured on each cluster node
with a unique workerName. Once you’ve defined this ID manager, you can
can configure the JDBCSessionManager.

WebAppContext wac = new WebAppContext();
… //configure your webapp context
JDBCSessionManager jdbcMgr = new JDBCSessionManager(); jdbcMgr.setIdManager(server.getSessionIdManager());
wac.setSessionHandler(jdbcMgr);

Hot
Tip

Besides the JDBC-based managers, you can also use MongoDB for
session clustering. For this clustering solution, you configure the
MongoDBSessionIDManager and the MongoSessionManager”.

SPDY support
SPDY is an experimental protocol whose goal it is to reduce the
latency of web pages. Jetty can support this protocol through the
HTTPSPDYServerConnector class.

<Configure id=”Server” class=”org.eclipse.jetty.server.Server”>
 <New id=”sslContextFactory” class=”...util.ssl.SslContextFactory”>
 <Set name=”keyStorePath”>your_keystore.jks</Set>
 <Set name=”keyStorePassword”>storepwd</Set>
 <Set name=”protocol”>TLSv1</Set>
 </New>
 <Call name=”addConnector”>
 <Arg>
 <New class=”..http.HTTPSPDYServerConnector”>
 <Arg><Ref id=”sslContextFactory”/></Arg>
 <Set name=”Port”>8443</Set>
 </New>
 </Arg>
 </Call>
</Configure>

USING WITH WEB FRAMEWORKS

This section shows how to run an application based on a number of
popular Java web frameworks using an embedded Jetty. This is especially
useful during development for a quick compile-build-test cycle or when
you want to run your application in a debugger with hot-code replace. If
your favorite web application framework isn’t listed here, these examples
should point you in the right direction to get Jetty working with your
framework.

JSF 2.0
JSF2 scans the WEB-INF/classes directories for beans. Before you can use
an embedded Jetty to directly launch a JSF application, you have to make
sure you configure your project to output its class files to the WEB-INF/
classes directory in your project. After that, you can use the standard
WebAppContext to run your JSF 2.0 web application directly from Jetty.

WebAppContext handler = new WebAppContext();
handler.setResourceBase(“src/main/webapp”);
handler.setDescriptor(“src/main/webapp/WEB-INF/web.xml”);
handler.setContextPath(“/”);
handler.setParentLoaderPriority(true);

Spring Web
Spring Web can be run directly from an exploded WAR file using a
standard WebAppContext (see GWT). You can also configure the Spring
DispatcherServlet directly.

ServletContextHanderl context = new ServletContextHandler
 (server, “/”, Context.SESSIONS);
DispatcherServlet dispatcherServlet = new DispatcherServlet();
dispatcherServlet.setContextClass(
 AnnotationConfigWebApplicationContext.class);
ServletHolder holder = new ServletHolder(dispatcherServlet);
holder.setInitOrder(1);
context.addServlet(holder, “/example/*”);
context.setInitParameter(“contextConfigLocation”
 ,”classpath*:resources/spring/*.xml”);

This context can be added as a handler to a server instance.

Grails
Grails already provides Jetty functionality out of the box. To run grails
using an embedded Jetty container, you can use the grails run-app
command.

Wicket
To run Wicket from Jetty, you can configure the WicketServlet with the
applicationClassName you want to start.

6 Jetty

DZone, Inc.
150 Preston Executive Dr.
Suite 200
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2012 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED RESOURCES

ServletContextHandler context = new ServletContextHandler
 (server, “/”, Context.SESSIONS);ServletHolder ServletHolder holder = new ServletHolder(new WicketServlet());
holder.setInitParameter(
 “applicationClassName”,”dzone.refcard.Application”);
// set init order to initialize when handler starts
holder.setInitOrder(1);
context.addServlet(servletHolder, “/*”);

This context can be added as a handler to a server instance.

GWT, Vaadin and Tapestry
You can directly run a GWT or a Vaadin application from an exploded
WAR file using a standard WebAppContext.

WebAppContext handler = new WebAppContext();
handler.setResourceBase(“./apps/TheGWTApplication”);
handler.setDescriptor(“./apps/TheGwtApplication/WEB-INF/web.xml”);
handler.setContextPath(“/”);
handler.setParentLoaderPriority(true);

This context can be added as a handler to a server instance.

RUNNING STANDALONE

If you want to configure the standard Jetty distribution and not run Jetty
embedded from your own application, you can configure Jetty using the
following XML files.

File Description

jetty.xml Main configuration file. Configures a Server class. Normally located
in $JETTY_HOME/etc/jetty.xml

jetty-web.xml Configure a web application context. Located in the WEB-INF direc-
tory of a specific web application.

jetty-env.xml Allows you to configure JNDI resources for a web application.
Located in the WEB-INF directory of a web application.

webdefault.xml Set default values on a web application context that will be applied
to all web applications. This is loaded before the web.xml is pro-
cessed. Located in ${jetty.home}/etc/webdefault

override-web.xml Jetty applies the configuration in this file after the web.xml from a
web application is parsed. This file is located in the WEB-INF direc-
tory of a web application

More information on running Jetty standalone can be found at the Jetty
Wiki: http://wiki.eclipse.org/Jetty/Feature/Start.jar

INTEGRATION WITH MAVEN

Jetty is also often used in a maven build file to easily run and test a
webapp project. When running from Maven, you can configure Jetty using
the configuration elements provided by the plugin.

XML Element Description

connectors List of connectors objects. If not specified, a SelectChannelCon-
nector will be configured on port 8080.

jettyXML Location of a jetty.xml configuration file. Use this for objects that
can’t be configured from the plugin.

scanIntervalSeconds Interval to check for changes to the webapp. If a change is
detected, the webapp is redeployed.

systemProperties Sets system properties that are used during the execution of the
plugin.

systemPropertiesFile Loads system properties from a file. These properties are avail-
able during the execution of the plugin.

loginServices A list of LoginService implementations that are available to the
webapp.

requestLog Configures an implementation of a RequestLog.

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over Free Cheat Sheets
Upcoming Refcardz

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

Jos Dirksen works as Architect for JPoint. In the last
couple of years Jos has worked on large projects in the
public and private sector, ranging from very technology-
focussed integration projects to SOA/BPM projects
using WS-* and REST based architectures. Jos has given
many presentations on conferences such as Javaone,
NL-JUG, Devoxx etc., and has written two books for

Manning: Open Source ESBs in Action and SOA Governance in
Action. He also has his own blog where he writes about interesting
technologies and shares his ideas about REST, API Design, Scala, Play
and more.

Jetty provides a Web server and
javax.servlet container, plus support
for Web Sockets, OSGi, JMX,
JNDI, JASPI, AJP and many other

integrations. These components are open source and available for
commercial use and distribution. Jetty is used in a wide variety of
projects and products. Jetty can be embedded in devices, tools,
frameworks, application servers, and clusters. See the Jetty Powered
page for more uses of Jetty.
http://www.eclipse.org/jetty/

ABOUT THE AUTHOR

150

Scala Collections
JavaFX 2.0
Opa
Data Warehousing

