

DZone, Inc. | www.dzone.com

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#155
M

o
ck

it
o

By Marcin Zajaczkowski

INTRODUCTION TO UNIT TESTING

A unit test is a test related to a single responsibility of a single class, often
referred to as the System Under Test (SUT). The purpose of unit tests
is to verify that the code in an SUT works. A tested object usually talks
to other objects known as collaborators. These collaborators need to
be created so the tested object can be assigned to them in the test. To
make unit testing simpler and allow control of all aspects of the execution
context, it is useful to replace the real cooperating objects with their
fake replacements called test doubles. They look like the originals, but
do not have any dependencies to other objects. Test doubles can also
be easily programmed with specific expectations, such as recording any
interactions they’ve had.

To make it clearer, try to imagine code for a typical enterprise system.
Now here’s a service with some logic that needs two classes to fulfill its
responsibility. Both classes then require a few other classes. One of these
other classes could be a DAO, which needs access to a database, while
yet another requires a message queue. It would be quite an effort to
create that hierarchy and provide required resources. There could also be
problems while running that kind of test, e.g., long startup times or the
inability to test multiple developer stations simultaneously. Using Mocks,
though, the same test could be much cleaner and faster.

Test doubles can be divided into a few groups:

•	 Dummy - an empty object passed in an invocation (usually only
to satisfy a compiler when a method ar- gument is required)

•	 Fake - an object having a functional implementation, but usually
in a simplified form, just to satisfy the test (e.g., an in-memory
database)

•	 Stub - an object with hardcoded behavior suitable for a given
test (or a group of tests)

•	 Mock - an object with the ability to a) have a programmed
expected behavior, and b) verify the interactions occurring in its
lifetime (this object is usually created with the help of mocking
framework)

•	 Spy - a mock created as a proxy to an existing real object; some
methods can be stubbed, while the un- stubbed ones are for-
warded to the covered object

Mockito is a mocking framework helpful in creating mocks and spies in a
simple and intuitive way, while at the same time providing great control of
the whole process.

CONFIGURING MOCKITO IN A PROJECT

Mockito artifacts are available in the Maven Central Repository (MCR).
The easiest way to make MCR available in your project is to put the
following configuration in your dependency manager:

Maven:
<dependency>
 <groupId>org.mockito</groupId>
 <artifactId>mockito-core</artifactId>
 <version>1.9.0</version>
 <scope>test</scope>
</dependency>

Gradle:
t e s t C o m p i l e “ o r g . m o c k i t o : m o c k i t o − c o r e : 1 . 9 . 0 “

Ivy:
<dependency org=”org.mockito” name=”mockito-core” rev=”1.9.0” conf=”test->default”/>

It will add JAR with Mockito classes as well as all required dependencies.
Change 1.9.0 with the latest released version of Mockito.

This Refcard is based on the latest stable version 1.9.0. Some things are
about to change in the further Mockito versions.

CREATING MOCK

A mock can be created with the help of a static method mock():

F l o w e r f l o w e r M o c k = M o c k i t o . mock (F l o w e r . c l a s s) ;

But there’s another option: use of @Mock annotation:

@Mock
p r i v a t e F l o w e r f l o w e r M o c k ;

Warning: If you want to use @Mock or any other Mockito annotations, it
is required to call MockitoAnnotations.initMocks(testClass) or use MockitoJUnit4Runner as a JUnit
runner (see the annotation section below for more information).

Hot
Tip

You can use Mockito to create mocks of a regular
(not final) class not only of an interface.

CONTENTS INCLUDE:
n	 Introduction to Unit Testing
n	 	Configuring Mockito in a Project
n	 Creating Mock
n	 Stubbing Method’s Returned Value
n	 Argument Matching
n	 And more...

Mockito
A Simple, Intuitive Mocking Framework

http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://txt.couchware.com/medias/jump?hid=2623&cid=449&mid=807

2 MOCKITO

DZone, Inc. | www.dzone.com

STUBBING METHOD’S RETURNED VALUE

One of the basic functions of mocking frameworks is an ability to return
a given value when a specific method is called. It can be done using
Mockito.when() in conjunction with thenReturn () . This process of defining
how a given mock method should behave is called stubbing.

Warning: Note that the examples in this Refcardwere created to
demonstrate behaviors of Mockito in a specific context. Of course, when
writing the test for your codebase, there is no need to ensure that mocks
are stubbed correctly.

package info.solidsoft.blog.refcard.mockito;

import org.testng.annotations.Test;

import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import static org.testng.Assert.assertEquals;

public class SimpleStubbingTest {
 public static final int TEST_NUMBER_OF_LEAFS = 5;

 @Test
 public void shouldReturnGivenValue() {
 Flower flowerMock = mock(Flower.class);
 when(flowerMock.getNumberOfLeafs()).thenReturn(TEST_NUMBER_OF_LEAFS);

 int numberOfLeafs = flowerMock.getNumberOfLeafs();

 assertEquals(numberOfLeafs, TEST_NUMBER_OF_LEAFS);
 }
}

Hot
Tip

Mockito makes heavy use of static methods. It is good to use static
imports to make code shorter and more readable. IDE can be used to
automatize adding static imports.

Mockito provides a family of functions for requesting specific behaviors.

Method Description

thenReturn(T valueToBeReturned) returns given value

thenThrow(Throwable toBeThrown)
thenThrow(Class<? extends Throwable>
toBeThrown)

throws given exception

then(Answer answer)
thenAnswer(Answer answer)

uses user created code to
answer

thenCallRealMethod() calls real method when
working with partial
mock/spy

Hot
Tip

Non void methods return by default an “empty” value appropriate for
its type (e.g.: null, 0, false, empty collection).

Following an arrange-act-assert pattern (similar to given-when-then from
Behavior Driven Development) a test should be split into three parts
(blocks), each with a specified responsibility.

Section name Responsibility

arrange (given) SUT and mocks initialization and configuration

act (when) An operation which is a subject to testing;
preferably only one operation on an SUT

assert (then) The assertion and verification phase

This way, what is being tested, is clearly separated from the setup and
verification parts. To integrate cleanly with Behavior Driven Development
semantics Mockito contains BDDMockito class which introduces an alias
given() which can be used instead of when() method while stubbing.
Here’s the previous example, but now using the BDD semantics:

import static org.mockito.BDDMockito.given;
import static org.mockito.Mockito.mock;
import static org.testng.Assert.assertEquals;

@Test
public void shouldReturnGivenValueUsingBDDSemantics() {
 //given
 Flower flowerMock = mock(Flower.class);
 given(flowerMock.getNumberOfLeafs()).willReturn(TEST_NUMBER_OF_LEAFS);

 //when
 int numberOfLeafs = flowerMock.getNumberOfLeafs();

 //then
 assertEquals(numberOfLeafs, TEST_NUMBER_OF_LEAFS);
}

given-when-then comments make intentions of tests clearer.

ARGUMENT MATCHING

Mockito, by default, compares arguments using equals () methods.
Sometimes it’s convenient to know exactly what parameter the method
will be called with.

@Test
public void shouldMatchSimpleArgument() {
 WateringScheduler schedulerMock = mock(WateringScheduler.class);
 given(schedulerMock.getNumberOfPlantsScheduledOnDate(WANTED_DATE)).willReturn(VALUE_
FOR_WANTED_ARGUMENT);

 int numberForWantedArgument = schedulerMock.getNumberOfPlantsScheduledOnDate(WANT
ED_DATE);
 int numberForAnyOtherArgument = schedulerMock.getNumberOfPlantsScheduledOnDate(A
NY_OTHER_DATE);

 assertEquals(numberForWantedArgument, VALUE_FOR_WANTED_ARGUMENT);
 assertEquals(numberForAnyOtherArgument, 0); //default value for int
}

Very often we needed to define a wider matching range. Mockito provides
a set of build-in matchers defined in Matchers and AdditionalMatchers
classes (see corresponding table).

Hot
Tip

If an argument matcher is used for at least one argument, all
arguments must be provided by matchers.

given(plantSearcherMock.smellyMethod(anyInt(), contains(“asparag”), eq(“red”))).willReturn(true);
//given(plantSearcherMock.smellyMethod(anyInt(), contains(“asparag”), “red”)).willReturn(true);
//incorrect - would throw an exception

Luckily, in the last case, Mockito will protest by throwing a meaningful
exception:

org.mockito.exceptions.misusing.InvalidUseOfMatchersException:
Invalid use of argument matchers!
3 matchers expected, 2 recorded.
This exception may occur if matchers are combined with raw values:
 //incorrect:
 someMethod(anyObject(), “raw String”);
When using matchers, all arguments have to be provided by matchers.
For example:
 //correct:
 someMethod(anyObject(), eq(“String by matcher”));

For more info see javadoc for Matchers class.

Hot
Tip

The methods from the any() family don’t do any type checks. Various
variants were created to avoid casting. To perform type checks,
method isA(Class) should be used.

It is also possible to create a custom matcher by extending the
ArgumentMatcher class and using it together with argThat ()

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

3 MOCKITO

DZone, Inc. | www.dzone.com

given(schedulerMock.getNumberOfPlantsScheduledOnDate(
 argThat(haveHourFieldEqualTo(7)))).willReturn(1);

//with the util method to create a matcher
private ArgumentMatcher<Date> haveHourFieldEqualTo(final int hour) {
 return new ArgumentMatcher<Date>() {
 @Override
 public boolean matches(Object argument) {
 return ((Date) argument).getHours() == hour;
 }
 };
}

Name Matching rules

any(), any(Class<T> clazz) any object or null, the same in a
form which allows to avoid casting

anyBoolean(), anyByte(), anyChar(),
anyDouble(), anyFloat(), anyInt(),
anyLong(), anyShort(), anyString()

any object of the given type or
null - preferred over generic
any(Class<T> } clazz) for
supported types

anyCollection(), anyList(),anyMap(),
anySet()

respectively any collection type

anyCollectionOf(Class<T>
clazz), anyListOf(Class<T> clazz),
anyMapOf(Class<T> clazz),
anySetOf(Class<T> clazz)

respectively any collection type in
a generic friendly way

anyVararg() Any vararg

eq(T value) Any object that is equal to the
given using equals() method

isNull, isNull(Class<T> clazz) Null value

isNotNull, isNotNull(Class<T>
clazz)

Not null value

isA(Class<T> clazz) Any object that implements the
given class

refEq(T value, String...
excludeFields)

Any object that is equal to the
given using reflection; some fields
can be excluded

matches(String regex) String that matches the given
regular expression

startsWith(string),
endsWith(string), contains(string)
for a String class

string that starts with, ends with or
contains the given string

aryEq(PrimitiveType value[]),
aryEq(T[]
value)

an array that is equal to the given
array (has the same length and
each element is equal)

cmpEq(Comparable<T> value) any object that is equal to the
given using compareTo() method

gt(value), geq(value), lt(value),
leq(value) for primitive types and
Comparable<T>

any argument greater, greater or
equal, less, less or equal than the
given value

argThat(org.hamcrest.Matcher<T>
matcher)

any object that satisfies the
custom matching

booleanThat(Matcher<Boolean>
matcher),
byteThat(matcher),
charThat(matcher),
doubleThat(matcher),
floatThat(matcher),
intThat(matcher),
longThat(matcher),
shortThat(matcher)

any object of the given type
that satisfies the custom
matching - preferred overgeneric
argThat(matcher) for primitivesspy

and(first, second), or(first, second),
not(first) for primitive types and T
extending Object

an ability to combine results of the
other matchers

Table 1: Selected Mockito matchers

STUBBING MULTIPLE CALLS TO THE SAME METHOD

Sometimes you want to return different values for subsequent calls of the
same method. Returned values can be mixed with exceptions. The last
value/behavior is used for all following calls.

@Test
public void shouldReturnLastDefinedValueConsistently() {
 WaterSource waterSource = mock(WaterSource.class);
 given(waterSource.getWaterPressure()).willReturn(3, 5);

 assertEquals(waterSource.getWaterPressure(), 3);
 assertEquals(waterSource.getWaterPressure(), 5);
 assertEquals(waterSource.getWaterPressure(), 5);
}

STUBBING VOID METHODS

As we’ve seen before, the stubbed method is passed as a parameter to
a given / when method. This obviously means that you cannot use this
construct for void methods. Instead, you should use willXXX..given or
doXXX..when. See here:

@Test(expectedExceptions = WaterException.class)
public void shouldStubVoidMethod() {
 WaterSource waterSourceMock = mock(WaterSource.class);
 doThrow(WaterException.class).when(waterSourceMock).doSelfCheck();
 //the same with BDD semantics
 //willThrow(WaterException.class).given(waterSourceMock).doSelfCheck();

 waterSourceMock.doSelfCheck();

 //exception expected
}

do/willXXX methods family:

Method Description

doThrow(Throwable toBeThrown)
doThrow(Class<? extends
Throwable> toBeThrown)

Throws given exception

doAnswer(Answer answer) Uses user-created code to answer

doCallRealMethod() Working with spy

doNothing() Does nothing

doReturn(Object toBeReturned) Returns given value (not for void
methods)

will/doXXX methods are also handy when working with spy objects, as will
be seen in the following section.

A given / when construct allows Mockito to internally use the type
returned by a stubbed method to provide a typed argument in the will/
thenReturn methods. Void is not a valid type of it causes a compilation
error. Will/doReturn does not use that trick. Will/doReturn can be also
used for stubbing non-void methods, though it is not recommended
because it cannot detect wrong return method types at a compilation time
(only an exception at runtime will be thrown).

Hot
Tip

It is not recommended to use do/ willReturn for stubbing non-void
methods.

//compilation error - int expected, not boolean
//given(flowerMock.getNumberOfLeafs()).willReturn(true);

//only runtime exception
willReturn(true).given(flowerMock).getNumberOfLeafs();

STUBBING WITH A CUSTOM ANSWER

In some rare cases it can be useful to implement a custom logic, later
used on a stubbed method invocation. Mockito contains a generic Answer
interface allowing the implementation of a callback method and providing
access to invocation parameters (used arguments, a called method, and a
mock instance).

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

4 MOCKITO

DZone, Inc. | www.dzone.com

@Test
public void shouldReturnTheSameValue() {
 FlowerFilter filterMock = mock(FlowerFilter.class);
 given(filterMock.filterNoOfFlowers(anyInt())).will(returnFirstArgument());

 int filteredNoOfFlowers = filterMock.filterNoOfFlowers(TEST_NUMBER_OF_FLOWERS);

 assertEquals(filteredNoOfFlowers, TEST_NUMBER_OF_FLOWERS);
}

//reusable answer class
public class ReturnFirstArgument implements Answer<Object> {
 @Override
 public Object answer(InvocationOnMock invocation) throws Throwable {
 Object[] arguments = invocation.getArguments();
 if (arguments.length == 0) {
 throw new MockitoException(“...”);
 }
 return arguments[0];
 }

 public static ReturnFirstArgument returnFirstArgument() {
 return new ReturnFirstArgument();
 }
}

Warning: The need to use a custom answer may indicate that tested code
is too complicated and should be re-factored.

VERIFYING BEHAVIOR

Once created, a mock remembers all operations performed on it.
Important from the SUT perspective, these operations can easily be
verified. In the basic form, use Mockito. verify (T mock) on the mocked
method.

WaterSource waterSourceMock = mock(WaterSource.class);

waterSourceMock.doSelfCheck();

verify(waterSourceMock).doSelfCheck();

By default, Mockito checks if a given method (with given arguments) was
called once and only once. This can be modified using a VerificationMode.
Mockito provides the number of very meaningful verification modes. It is
also possible to create a custom verification mode.

Name Verifying method was...

times(int wantedNumberOfInvocations) called exactly n times (one by default)fl

never() never called

atLeastOnce() called at least once

atLeast(int minNumberOfInvocations) called at least n times

atMost(int maxNumberOfInvocations) called at most n times

only() the only method called on a mock

timeout(int millis) interacted in a specified time range

v e r i f y (w a t e r S o u r c e M o c k , n e v e r ()) . d o S e l f C h e c k () ;
v e r i f y (w a t e r S o u r c e M o c k , t i m e s (2)) . g e t W a t e r P r e s s u r e () ;
v e r i f y (w a t e r S o u r c e M o c k , a t L e a s t (1)) . g e t W a t e r T e m p e r a t u r e () ;

As an alternative to never (), which works only for the specified call,
verifyZeroInteractions (Object ... mocks) method can be used to verify no
interaction with any method of the given mock(s). Additionally, there is
one more method available, called verifyNoMoreInteractions (Object ...
mocks), which allows to ensure that no more interaction (except
the already verified ones) was performed with the mock(s
verifyNoMoreInteractions can be useful in some cases, but shouldn’t
be overused by using on all mocks in every test. Unlike other mocking
frameworks, Mockito does not automatically verify all stubbed calls. It is
possible to do it manually, but usually it is just redundant. The tested code
should mainly care about values returned by stubbed methods. If a
stubbed method was not called, while being important from the test
perspective, something else should break in a test. Mockito’s philosophy
allows the test writer to focus on interesting behaviors in the test for the
SUT and his collaborators.

Hot
Tip

Mockito does not automatically verify calls

VERIFYING CALL ORDER

Mockito enables you to verify if interactions with a mock were performed
in a given order using the InOrder API. It is possible to create a group of
mocks and verify the call order of all calls within that group.

@Test
public void shouldVerifyInOrderThroughDifferentMocks() {
 WaterSource waterSource1 = mock(WaterSource.class);
 WaterSource waterSource2 = mock(WaterSource.class);

 waterSource1.doSelfCheck();
 waterSource2.getWaterPressure();
 waterSource1.getWaterTemperature();

 InOrder inOrder = inOrder(waterSource1, waterSource2);
 inOrder.verify(waterSource1).doSelfCheck();
 inOrder.verify(waterSource2).getWaterPressure();
 inOrder.verify(waterSource1).getWaterTemperature();
}

Warning: The need to use a custom answer may indicate that tested code
is too complicated and should be re-factored.

VERIFYING WITH ARGUMENT MATCHING

During a verification of an interaction, Mockito uses equals () methods
on the passed arguments. This is usually enough. It is also possible to
use the standard matchers, described earlier about stubbing, as well as
custom matchers. However, in some situations it may be helpful to keep
the actual argument value to make custom assertions on it. Mockito offers
an ArgumentCaptor class, enabling us to retrieve the argument passed to
a mock.

//when
flowerSearcherMock.findMatching(searchCriteria);

//then
ArgumentCaptor<SearchCriteria> captor = ArgumentCaptor.forClass(SearchCriteria.class);
verify(flowerSearcherMock).findMatching(captor.capture());
SearchCriteria usedSearchCriteria = captor.getValue();
assertEquals(usedSearchCriteria.getColor(), “yellow”);
assertEquals(usedSearchCriteria.getNumberOfBuds(), 3);

ArgumentCaptor can be also created using @Captor annotation
(see appropriate section with annotations).

Warning: It is recommended to use ArgumentCaptor with verification, but
not with stubbing. Creating and using a captor in two different test blocks
can decrease test readability. In addition to a situation when a stubbed
method is not called, no argument is captured, which can be confusing.

Hot
Tip

It is possible to retrieve arguments of all calls of a given method using
captor . getAllValues ().

Warning: When an SUT internally uses the same object reference for
multiple calls on a mock, every time changing its internal state (e.g.,
adding elements to the same list) captor . getAllValues () will return the
same object in a state for the last call.

VERIFYING WITH TIMEOUT

Mockito lets you verify interactions within a specified time frame. It causes
a verify() method to wait for a specified period of time for a requested
interaction rather than fail immediately if that had not already happened.
It can be useful while testing multi-threaded systems.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

5 MOCKITO

DZone, Inc. | www.dzone.com

@Test
public void shouldFailForLateCall() {
 WaterSource waterSourceMock = mock(WaterSource.class);
 Thread t = waitAndCallSelfCheck(40, waterSourceMock);

 t.start();

 verify(waterSourceMock, never()).doSelfCheck();
 try {
 verify(waterSourceMock, timeout(20)).doSelfCheck();
 fail(“verification should fail”);
 } catch (MockitoAssertionError e) {
 //expected
 }
}

Warning: Currently , verifying with timeout doesn’t work with inOrder
verification.

Warning: All the multi-thread tests can become non-deterministic (e.g.,
under heavy load).

SPYING ON REAL OBJECTS

With Mockito, you can use real objects instead of mocks by replacing only
some of their methods with the stubbed ones. Usually there is no reason
to spy on real objects, and it can be a sign of a code smell, but in some
situations (like working with legacy code and IoC containers) it allows us to
test things impossible to test with pure mocks.

@Test
public void shouldStubMethodAndCallRealNotStubbedMethod() {
 Flower realFlower = new Flower();
 realFlower.setNumberOfLeafs(ORIGINAL_NUMBER_OF_LEAFS);
 Flower flowerSpy = spy(realFlower);
 willDoNothing().given(flowerSpy).setNumberOfLeafs(anyInt());

 flowerSpy.setNumberOfLeafs(NEW_NUMBER_OF_LEAFS); //stubbed - should do nothing

 verify(flowerSpy).setNumberOfLeafs(NEW_NUMBER_OF_LEAFS);
 assertEquals(flowerSpy.getNumberOfLeafs(), ORIGINAL_NUMBER_OF_LEAFS); //value was not
changed
}

Hot
Tip

When working with spies it is required to use the willXXX..given/
doXXX..when methods family instead of given .. willXXX/when..
thenXXX. This prevents unnecessary calls to a real method during
stubbing.

Warning: While spying, Mockito creates a copy of a real object, and
therefore all interactions should be passed using the created spy.

ANNOTATIONS

Mockito offers three annotations–@Mock, @Spy, @Captor– to simplify the
process of creating relevant objects using static methods. @InjectMocks
annotation simplifies mock and spy injection. It can inject objects using
constructor injection, setter injection or field injection.

//with constructor: PlantWaterer(WaterSource waterSource,
// WateringScheduler wateringScheduler) {...}

public class MockInjectingTest {
 @Mock
 private WaterSource waterSourceMock;

 @Spy
 private WateringScheduler wateringSchedulerSpy;

 @InjectMocks
 private PlantWaterer plantWaterer;

 @BeforeMethod
 public void init() {
 MockitoAnnotations.initMocks(this);
 }

 @Test
 public void shouldInjectMocks() {
 assertNotNull(plantWaterer.getWaterSource());
 assertNotNull(plantWaterer.getWateringScheduler());
 }
}

Annotation Responsibility

@Mock Creates a mock of a given type

@Spy Creates a spy of a given object

@Captor Creates an argument captor of a given type

@InjectMocks Creates an object of a given type and injects
mocks and spies existing in a test

Hot
Tip

To get annotations to function, you need to either call
MockitoAnnotations.initMocks(testClass) (usually in a @Before
method) or use MockitoJUnit4Runner as a JUnit runner.

Hot
Tip

To make a field injection with @InjectMock, Mock-ito internally uses
reflection. It can be especially useful when, in the production code,
dependencies are injected directly to the private fields (e.g., by an IoC
framework).

CHANGING THE MOCK DEFAULT RETURN VALUE

Mockito enables us to redefine a default value returned from non-stubbed
methods

Default Answer Description

RETURNS_DEFAULTS Returns a default “empty” value (e.g.,
null, 0, false, empty collection) - used by
default

RETURNS_SMART_NULLS Creates a spy of a given object

RETURNS_MOCKS Returns a default “empty” value, but a
mock instead of null

RETURNS_DEEP_STUBS Allows for a simple deep stubbing (e.g.,
Given(ourMock.getObject().getValue()).
willReturn(s))

CALLS_REAL_METHODS Call a real method of spied object

Warning: The last three default answers should not be needed
when working with well-crafted, testable code. The behavior can be
configured per mock during its creation or globally for all tests using
GlobalConfiguration mechanism (it helps to use RETURNS_SMART_
NULLS by default).

PlantWaterer plantWatererMock =
 mock(PlantWaterer.class, Mockito.RETURNS_DEEP_STUBS);
given(plantWatererMock.getWaterSource().getWaterPressure()).willReturn(5);

@Mock(answer = Answers.RETURNS_SMART_NULLS)
private PlantWaterer plantWatererMock;

Sample verbose exception received using SmartNull:

org.mockito.exceptions.verification.SmartNullPointerException:
You have a NullPointerException here:
-> at PlantWaterer.generateNPE(PlantWaterer.java:24)
because this method call was *not* stubbed correctly:
-> at PlantWaterer.generateNPE(PlantWaterer.java:24)
wateringScheduler.returnNull();

 at PlantWaterer.generateNPE(PlantWaterer.java:24)
 at DefaultValuesTest.shouldReturnNicerErrorMessageOnNPE(DefaultValuesTest.java:64)

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

6 MOCKITO

	

DZone, Inc.
150 Preston Executive Dr.
Suite 200
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2011 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOK

AUTHOR BIO

Hot
Tip

Check “Beyond the Mockito Refcard” (see link below) to get a
complete tutorial on how to easily configure SmartNulls for the
whole project. Also, other useful information is there that’s not in this
Refcard.

RESETTING MOCK

In some rare cases (like using a mock as a bean in an IoC container)
you may need to reset a mock using the Mockito. reset (T ... mocks)
static method. This causes the mock to forget all previous behavior and
interactions.

Warning: In most cases, using the reset method in a test is a code smell
and should be avoided. Splitting a large test into smaller ones with mocks

LIMITATIONS

Mockito has a few limitations worth remembering. They are generally
technical restrictions, but Mockito authors believe using hacks to work
around them would encourage people to write poorly testable code.
Mockito cannot:

•	 mock final classes
•	 mock enums
•	 mock final methods
•	 mock static methods
•	 mock private methods
•	 mock hashCode() and equals()

Nevertheless, when working with a badly written legacy
code, remember that some of the mentioned limitations
can be mitigated using the PowerMock or JMockit libraries.

Hot
Tip

PowerMock or JMockit can be used to work with code that cannot be
mocked with pure Mockito.

FURTHER READING

•	 http://blog.solidsoft.info/mockito-docs/ - official Mockito
documentation (redirect to the current version)

•	 http://blog.solidsoft.info/beyond-the-mockito-refcard/ - a series of
articles extending information contained In this Refcard

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over Free Cheat Sheets
Upcoming Refcardz

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

Practical Unit Testing with Test NG and Mockito
This book explains in detail how to implement unit tests using
two very popular open source Java technologies: TestNG and
Mockito. It presents a range of techniques necessary to write
high quality unit tests - e.g. mocks, parametrized tests and
matchers. It also discusses trade-offs related to the choices we
have to make when dealing with some real-life code issues.
http://practicalunittesting.com/

Marcin Zajaczkowski
Marcin Zajaczkowski is an experienced architect who specializes in
creating high quality software. Aligning himself closely with the Agile
methodologies and the Software Craftsmanship movement, Marcin
believes in the value of good, testable and maintainable code. Marcin
aims to forge excellent software that makes the client delighted
and the team proud of how the code itself looks. In his teaching as
a conference speaker, college lecturer, IT coach and trainer, Marcin
shows how to guide software development effectively using tests
(with TDD, pair programming, Clean Code, design patterns, etc.) and
maintain a quality-oriented development environment (with CI, Sonar,
automatic deployment, etc.). He is also a FOSS Projects author and
contributor, a Linux enthusiast, and blogs at http://blog.solidsoft.info/
Marcin co-operates with Pragmatists (http://pragmatists.pl/) - a
freaking good agile outsourcing Java shop based in Poland.

150

Android
JavaFX 2.0
PHP 5.4
Machine Learning Models

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://blog.solidsoft.info/mockito-docs/
http://blog.solidsoft.info/beyond-the-mockito-refcard/
http://practicalunittesting.com/
http://blog.solidsoft.info/
http://pragmatists.pl/

