

DZone, Inc. | www.dzone.com

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#156
Ja

va
F

X
 2

.0

By Stephen Chin

WHAT IS JAVAFX?

JavaFX is an exciting new platform for building Rich Internet Applications
with graphics, animation, and media. Starting with JavaFX 2.0, all the APIs
are written in pure Java, which lets you write JavaFX applications directly
in a language you are already familiar with. This Refcard will help you
get started writing JavaFX applications and also serve as a convenient
reference to some of the more advanced APIs.

To get started, download the latest JavaFX SDK from the JavaFX website at
http://javafx.com/

If you are new to JavaFX, the easiest way to get started is to download
the NetBeans bundle. This gives you full IDE support for writing JavaFX
applications out of the box, including library setup, deployment options,
and an integrated UI debugger. However, it is possible to do everything
from your favorite IDE, such as Eclipse or IntelliJ, or the command line
directly.

JFXPOETRY, A SIMPLE EXAMPLE

To illustrate how easy it is to build an application that melds graphics,
text, animation, and media, we will start with a simple tutorial. The goal
will be to write an application that:

•	 Loads	and	displays	an	image	from	the	internet
•	 Displays	and	animates	a	verse	of	poetry
•	 Makes	use	of	graphic	effects
•	 Plays	media	asynchronously

For	the	JFXPoetry	theme,	we	will	use	“Pippa’s	Song”,	a	well	known	
excerpt from Robert Browning’s Pippa Passes.

Beginning with a Stage
Stage	and	Scene	are	the	building	blocks	of	almost	every	JavaFX	program.		
A	Stage	can	either	be	represented	as	a	Frame	for	desktop	applications	or	
a rectangular region for applications embedded in a browser. The visual
content of a Stage is called a Scene, which contains a parent node that
is the root of a graph or tree of the rest of the elements called the scene
graph. The following program creates a basic Stage and Scene with a
StackPane	layout	as	the	root	element:

public class JFXPoetry extends Application {
 public static void main(String[] args) {
 launch(args);
 }

 @Override
 public void start(Stage stage) {
 stage.setTitle(“Pippa’s Song by Robert Browning”);
 stage.setResizable(false);

 StackPane root = new StackPane();
 stage.setScene(new Scene(root, 500, 375));
 // add additional code here
 stage.show();
 }
}

This code illustrates the basic template for creating any JavaFX
application. The necessary elements are:

•	 A	class	that	extends	javafx.application.Application
•	 A	Java	main	method	that	calls	the	launch	helper	method
•	 An	implementation	of	the	start	method	that	takes	the	primary		
 stage

The start method is guaranteed to be called on the JavaFX UI thread, so
you	can	take	care	of	scene	graph	manipulation	and	finally	show	the	Stage	
when you are ready. Compiling and running this application will create
a window with the title “Pippa’s Song by Robert Browning” as shown in
Figure 1.

Hot
Tip

The JavaFX scene graph is an extremely powerful concept, which
can be used to apply transformations and effects that change the
rendering of all the child nodes.

Figure 1. A simple Stage with a descriptive title

CONTENTS INCLUDE:
n	 What is JavaFX
n	 	JFX Poetry, A simple example
n	 Loading	an	image
n	 Displaying text with effects
n	 Animated transitions
n	 Interacting with controls
n	 Finishing with media & more...

JavaFX 2.0

brought to you by...

http://www.dzone.com
http://www.refcardz.com
http://javafx.com/
http://www.refcardz.com
http://txt.couchware.com/medias/jump?hid=2623&cid=449&mid=807

2 JavaFX 2.0

DZone, Inc. | www.dzone.com

Loading	and	displaying	images	in	JavaFX	is	extremely	easy	to	do.	
The	Image	class	allows	you	to	load	an	image	from	a	local	file	or	a	
remote	server	simply	by	specifying	the	URL.		This	can	then	be	set	on	an	
ImageView to be displayed inside of a Scene. The following code should
be added before showing the Stage in replacement of the “add additional
code here” comment:

Image image = new Image(“http://farm1.static.flickr.com/39/121693644_75491b23b0.
jpg”);
ImageView imageView = new ImageView(image);
root.getChildren().add(imageView);

Notice	that	to	add	the	Image	element	to	the	root	StackPane,	you	must	
first	get	the	list	of	children	and	then	add	an	element.		This	is	a	common	
pattern used throughout the JavaFX APIs that is possible because of
Observable	Lists	where	any	change	to	the	list	contents	is	automatically	
updated in the UI.

For	the	background	image,	we	have	chosen	a	picture	of	a	misty	morning	
in	Burns	Lake,	BC,	Canada	taken	by	Duane	Conlon.		The	running	example	
can be seen in Figure 2.

Figure	2.	Image	loaded	from	the	network

DISPLAYING TEXT WITH EFFECTS

Displaying Text in JavaFX is as simple as constructing a Text Node and
passing in a String to the constructor. There are many properties available
on	Text;	however,		for	this	example,	we	will	set	the	font	and	fill	color	and	
add	a	Drop	Shadow	effect	to	make	the	text	stand	out	on	the	background.

To create the DropShadow in the above code, we chose to use the builder
syntax, which is a fluent API for creating JavaFX UI elements. Every JavaFX
class has a builder peer that can be used to set properties by chaining
method	calls	and	will	return	an	instance	of	the	class	when	the	final	build	
method	is	invoked.		This	allows	us	to	change	the	radius	and	spread	
properties of the DropShadow in order to accentuate the letters. Figure 3
shows the updated example with Text overlaid on the Image.

Figure 3. Updated example with a Text overlay

JavaFX offers a large set of graphics effects that you can easily apply to
nodes to create rich visual effects. Table 1 lists all the available effects you
can choose from.

Table 1. Graphics effects available in JavaFX

Transition Description

Blend Blends	two	inputs	together	using	a	pre-defined	BlendMode

Bloom Makes	brighter	portions	of	the	node	appear	to	glow

BoxBlur Fast	blur	with	a	configurable	quality	threshold

ColorAdjust Per-pixel adjustments of hue, saturation, brightness, and
contrast

ColorInput Fills a rectangular region with the given Color

DisplacementMap Shifts	each	pixel	by	the	amount	specified	in	a	displacement	
map

Hot
Tip

By using the cache property on Node, you can improve performance
and avoid rendering artifacts during animation.

Text text
 = new Text(
 “The year’s at the spring,\n” +
 “And day’s at the morn;\n” +
 “Morning’s at seven;\n” +
 “The hill-side’s dew-pearled;\n” +
 “The lark’s on the wing;\n” +
 “The snail’s on the thorn;\n” +
 “God’s in His heaven--\n” +
 “All’s right with the world!”);
text.setFont(Font.font(“Serif”, FontWeight.BOLD, 30));
text.setFill(Color.GOLDENROD);
text.setEffect(DropShadowBuilder.create().radius(3).spread(0.5).build());
text.setCache(true);
root.getChildren().add(text);

LOADING AN IMAGE

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

3 JavaFX 2.0

DZone, Inc. | www.dzone.com

DropShadow Displays an offset shadow underneath the node

GaussianBlur Blurs	the	node	with	a	configurable	radius

Glow Makes	the	node	appear	to	glow	with	a	given	intensity	level

ImageInput Passes an image through to a chained effect

InnerShadow Draws a shadow on the inner edges of the node

Lighting Simulates a light source to give nodes a 3D effect

MotionBlur Blurs the image at a given angle to create a motion effect

PerspectiveTransform Maps	a	node	to	an	arbitrary	quadrilateral	for	a	perspective	
effect

Reflection Displays an inverted view of the node to create a reflected
effect

SepiaTone Creates a sepia tone effect to mimic aged photographs

Shadow Similar to a DropShadow but without the overlaid image

ANIMATED TRANSITIONS

Animations in JavaFX can be accomplished either by setting up a Timeline
from scratch or by using one of the prefabricated Transitions. To animate
the Text rising onto the screen, we will use a TranslateTransition, which
adjusts	the	position	of	a	node	in	a	straight	line	for	the	specified	duration:

final TranslateTransition translate = TranslateTransitionBuilder.create()
 .duration(Duration.seconds(24))
 .node(text)
 .fromY(image.getHeight())
 .toY(0)
 .interpolator(Interpolator.EASE_OUT)
 .build();
translate.play();

Hot
Tip

 Every JavaFX class has a matching builder, which you can use to
make your code more readable when setting multiple properties.

By setting an interpolator of EASE_OUT, the text will start at full speed
and gradually deaccelerate as it approaches its destination. To run the
transition, all you need to do is call the play() function, which will animate
the text as shown in Figure 4.

Table 2 lists all of the available transitions that are part of the JavaFX
API.	To	get	a	feel	for	how	the	different	transitions	work,	try	adding	a	
FadeTransition	that	will	gradually	fade	the	background	in	over	a	five-
second duration.

Table 2. Transitions Supported by JavaFX

Transition Description

FadeTransition Changes the opacity of a node over time

FillTransition Animates	the	fill	color	of	a	shape

ParallelTransition Plays	a	sequence	of	transitions	in	parallel

PathTransition Animates nodes along a Shape or Path

PauseTransition Executes	an	action	after	the	specified	delay

RotateTransition Changes the rotation of a node over time

ScaleTransition Changes the size of a node over time

SequentialTransition Plays	a	sequence	of	transitions	in	series

StrokeTransition Animates	the	stroke	width	of	a	shape

TranslateTransition Changes the position of a node over time

INTERACTING WITH CONTROLS

The	JavaFX	2	release	features	a	complete	library	of	skinnable	controls	that	
give you everything you will need for most web and business applications.
Table 3 lists some of the controls and what they can be used for.

Control Description

Accordion The Accordion control lets you display a list
of	nodes	that	can	be	expanded	by	clicking	
the title. Since the title and content areas
are both JavaFX nodes, you can embed
images, controls, and even media in the
accordion.

Button JavaFX buttons are extremely versatile and
have complete control over all aspects of
style including color, text, shape, and even
images.

CheckBox The	CheckBox	control	is	a	specialized	type	
of button that includes a label text and a
check	selection	area	that	can	be	checked,	
unchecked,	or	indeterminate,	allowing	for	
tri-state behavior.

ChoiceBox A ChoiceBox allows selection from a list of
pre-defined	items	using	a	drop-down	menu.	
This	control	supports	a	null	(or	undefined)	
state and sets the selected item to some-
thing that is not in the list.

Hyperlink Hyperlinks	are	a	special	type	of	button	that	
mimic	the	behavior	of	a	hyperlink	in	a	web	
browser. This includes rollover animation
and	a	special	style	for	visited	links.	

Label A label is a basic control for displaying
read-only text. It supports ellipses for
content that is too long to be displayed
and	keyboard	mnemonics	for	creating	ac-
cessible UIs.

ListView The	JavaFX	ListView	lets	you	display	a	verti-
cal	or	horizontal	list	of	items	and	is	backed	
by	an	Observable	List	that	will	update	
automatically update the UI when the con-
tents change. You can display Strings or any
other	type	of	object	in	a	List	by	providing	
your own cell factory that converts objects
into JavaFX nodes for display. Also, the list
control supports single selection or multiple
selection and lists where you can edit the
contents inline.

ProgressBar The	ProgressBar	control	gives	feedback	
during long-running operations using a hori-
zontal progress bar. This can either be as a
percentage of complete when the duration
is	known	or	an	indeterminate	animation.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

4 JavaFX 2.0

DZone, Inc. | www.dzone.com

ProgressIndicator The ProgressIndicator control has the same
functionality as the ProgressBar, except
it displays the progress either as a small
pie graph or an indeterminate spinning
animation.

RadioButton The	JavaFX	RadioButton	behaves	like	a	
two-state	checkbox	when	used	alone,	but	it	
is more commonly added to a ToggleGroup
where only one of a set of radio buttons can
be active at a time.

TableView The TableView is a very powerful table
component for JavaFX that supports a
two-dimensional grid of cells with column
headers, column resizing, column reorder-
ing, multi-column sorting, nested columns,
cell spans, editable cells, and many more
features.

TabPane A TabPane displays a list of Tabs, only one
of which can be active and displayed at a
given time. The list can be positioned along
the top, left, right, or bottom of the content
area.	If	there	are	more	tabs	than	fit,	they	will	
be displayed in a drop-down menu.

TextField/
TextArea/
PasswordField

JavaFX provides a complete set of editable
text area controls, including a basic one-line
TextField, a multi-line TextArea, and a spe-
cialized	PasswordField	that	masks	characters	
as they are entered.

ToolBar The ToolBar lets you create a horizontal
or	vertical	list	of	nodes	styled	like	a	typical	
application toolbar. You can add any type of
node to the toolbar, but it is common to use
different types of buttons spaced out with
separators.

TreeView The TreeView shows a hierarchical view
of TreeItems with controls to allow each
level to be expanded in place. To create a
TreeView with multiple top-level nodes, you
can set showRoot to false, which will hide
the	top-most	element	of	the	model.	Like	
the	ListView	control,	it	supports	custom	cell	
factories to display different content types
inline.

In addition to these controls, JavaFX also supports a ScrollPane, Separator,
Slider,	SplitPane,	Tooltip,	Menu,	HTMLEditor,	and	WebView.	All	of	the	
JavaFX	controls	are	fully	skinnable,	allowing	you	to	customize	the	look	and	
feel	to	match	the	design	of	your	application	using	CSS	or	a	custom	Skin	
class.
The simplest control to use is a Button, which can easily be scripted to
play	the	animation	sequence	again	from	the	beginning.	Adding	a	button	
to the scene graph is as simple as calling the constructor with the button
text and adding it to the list of children.

Button play = new Button(“Play Again”);
root.getChildren().add(play);
play.visibleProperty().bind(translate.statusProperty()
 .isEqualTo(Animation.Status.STOPPED));
play.addEventHandler(ActionEvent.ACTION,
 new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent event) {
 translate.playFromStart();
 // Uncomment once you finish the next section on Media:
 //mediaPlayer.stop();
 //mediaPlayer.play();
 }
});

To automatically hide the button while animation is in progress and show
it	after	the	animation	completes,	we	make	use	of	binding,	a	very	powerful	
JavaFX feature that is exposed via a new set of APIs in JavaFX 2. By
binding the visible property of the button to the animation status of the
translation transition, the button will be shown as soon as the animation
finishes.		

Hot
Tip

Binding is a great alternative for event listeners and callbacks,
because it allows you to create dynamic content with very little code.

Following	this,	we	make	use	of	an	ActionEvent	handler	to	play	the	
animation and the media from the start, which is triggered once the
button	shown	in	Figure	5	is	clicked.

Figure 5: Button Control to Play the Animation Again

The	finishing	touch	is	to	add	some	audio	to	the	application.	JavaFX	has	
built-in	media	classes	that	make	it	very	simple	to	play	audio	or	video	either	
from	the	local	files	or	streaming	off	the	network.	To	complete	the	example,	
we will add in a public domain clip of Indigo Bunting birds chirping in the
background.	Adding	in	the	audio	is	as	simple	as	creating	a	Media	object	
with	the	source	set	to	the	URL	and	wrapping	that	in	a	MediaPlayer	with	
autoPlay set to true.

Hot
Tip

Besides loading media off a network, you can also access local files or
resources in the application jar.

In	this	example,	we	are	using	an	mp3	file,	which	is	supported	across	
platforms by JavaFX. Table 3 lists some of the common media formats
supported by JavaFX, including all the cross-platform formats.

Table	3.	Common	Media	Formats	Supported	by	JavaFX

Type Format File Extension

Audio MPEG-1,	2,	2.5	Audio	Layer	3 mp3

Audio Waveform Audio Format wav

Audio Audio Interchange File Format aif, aiff

Video Flash	Video:	VP6	video	with	MP3	audio flv, f4v

Video FX	Media:	VP6	video	with	MP3	audio fxm

Note: This Refcard covers the latest changes through JavaFX 2.0.3. In
addition to what is mentioned here, Oracle has announced support for
AAC audio and H.264 video coming in JavaFX 2.1.

To	try	the	completed	example,	complete	with	animation	and	audio,	click	
the following url: http://steveonjava.com/refcard/JFXPoetry.jnlp

Media media = new Media(“http://video.fws.gov/sounds/35indigobunting.mp3”);
final MediaPlayer mediaPlayer = new MediaPlayer(media);
mediaPlayer.play();

FINISHING WITH MEDIA

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
ttp://steveonjava.com/refcard/JFXPoetry.jnlp

5 JavaFX 2.0

DZone, Inc. | www.dzone.com

FXML AND CSS

In addition to writing applications in pure Java, JavaFX also supports a
declarative	markup	format	called	FXML.		Additionally,	JavaFX	lets	you	use	
CSS	(cascading	style	sheets)	to	define	control	and	component	styles.	The	
combination	of	FXML	and	CSS	allows	you	to	specify	your	user	interface	in	
a	declarative	and	designer-friendly	format	while	keeping	your	application	
logic in the Java language.

The following code snippet shows the JFXPoetry application converted to
FXML

<StackPane prefHeight=”375” prefWidth=”500”
 xmlns:fx=”http://javafx.com/fxml”
 fx:controller=”steveonjava.Controller”>
 <children>
 <ImageView fx:id=”imageView”>
 
 </ImageView>
 <Text fx:id=”text” cache=”true” text=”
The year’s at the spring,
…”/>
 <Button fx:id=”button” text=”Play Again” onAction=”#replay”/>
 </children>
</StackPane>

Notice that the element names match the JavaFX classes and that the
attributes align with the properties of those classes. For complex types,
you can instead specify them as nested elements, which allows you to
create the scene graph hierarchy declaratively and specify complex types
such as Images.

The	fx	namespace	is	defined	in	the	root	element	and	used	to	hook	up	a	
controller class that has the Java application logic to play the animations
and media. The controller code is the same as shown earlier, so we have
reduced the code to just the stub methods in the following listing:

public class Controller implements Initializable {
 private TranslateTransition translate;
 private FadeTransition fade;
 private MediaPlayer mediaPlayer;
 @FXML private Text text;
 @FXML private Image image;
 @FXML private ImageView imageView;
 @FXML private Button button;
 @FXML private void replay(ActionEvent event) {…}
 @Override public void initialize(URL url, ResourceBundle rb) {…}
}

The	variables	annotated	with	@FXML	will	get	their	values	injected	by	the	
elements	in	the	FXML	file	with	the	matching	fx:id	tags.	Any	method	in	the	
controller	can	be	hooked	up	as	an	event	handler,	which	is	demonstrated	
by the replay method that is wired up to the onAction event of the button
element	in	the	FXML.	Finally,	you	can	override	the	initialize	method	to	
do application setup after all the variables have been initialized, such as
setting up the transitions, binding, and media for this poetry example.

The	FXML	file	is	complemented	by	a	CSS	file	that	defines	the	styles	for	the	
application elements, as shown in the following listing:

#text {
 -fx-font-family: serif;
 -fx-font-weight: bold;
 -fx-font-size: 30pt;
 -fx-fill: goldenrod;
 -fx-effect: dropshadow(three-pass-box, black, 3, .5, 0, 0);
}

#button {
 -fx-background-color: linear-gradient(darkorange, derive(darkorange, -80%));
 -fx-background-radius: 24;
 -fx-padding: 12;
 -fx-font-size: 16pt;
 -fx-font-weight: bold;
 -fx-text-fill: white;
}

Note: Notice that the text fill is specified differently for a Text element
(which inherits the Shape –fx-fill attribute) vs. a Button (which inherits the
Control –fx-text-fill attribute)

JavaFX	stylesheets	are	based	on	the	W3C	CSS2.1	specification	with	some	
additions	inspired	from	CSS3.	In	addition,	many	JavaFX-specific	properties	
are	exposed	by	prefixing	the	property	name	with	“-fx-”,	as	shown	in	
the	above	example	to	set	the	font	size,	fill,	and	drop	shadow	effect.	In	
addition, the above CSS includes a new styling for the “Play Again”
button so it matches the overall theme of the application better.

The	final	step	is	to	load	the	FXML	and	CSS	files	in	the	start	method	of	your	
application, as shown in the following code:

Parent root = FXMLLoader.load(().getResource(“JFXPoetry.fxml”));
Scene scene = new Scene(root);
scene.getStylesheets().add(().getResource(“JFXPoetry.css”).toExternalForm());

Notice	that	the	FXML	loader	expects	a	URL,	while	the	stylesheet	list	on	
Scene	is	of	type	String.	To	convert	a	URL	to	a	String	for	the	stylesheet,	
you can call toExternalForm to get the correct URI syntax for the resource
you are loading. Upon running you can see the new CSS button design as
shown in Figure 6.

Figure	6:	FXML	version	of	JFXPoetry	with	a	CSS-styled	button

To	try	the	completed	FXML	example,	complete	with	animation	and	audio,	
click	the	following	url:	http://steveonjava.com/refcard/JFXPoetry-FXML.jnlp

For	both	the	Java	and	FXML	versions	of	this	application,	you	can	find	the	
source code on GitHub: https://github.com/steveonjava/JFXPoetry

Hot
Tip

If you are a JVM language fan, you can also code your application
in Scala, Groovy, Visage, or other languages that compile to JVM

API REFERENCE

An easy way to view and navigate the full JavaFX API is to use the
Ensemble sample application. This comes with the JavaFX SDK and can
be	launched	by	double	clicking	the	Ensemble.jar	in	the	samples	folder.	
Figure	7	shows	what	the	Ensemble	application	looks	like	when	you	first	
open it.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://steveonjava.com/refcard/JFXPoetry-FXML.jnlp
https://github.com/steveonjava/JFXPoetry

6 JavaFX 2.0

DZone, Inc.
150 Preston Executive Dr.
Suite 200
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2011 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOK

Figure 7: JavaFX Ensemble application

Ensemble comes with live code samples of all the major features of
JavaFX	as	well	as	an	inline	API	documentation	viewer,	which	makes	use	of	
the new WebView component that provides a full-featured, embeddable
browser that you can use in your own applications.

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over Free Cheat Sheets
Upcoming Refcardz

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

Stephen Chin is a Java Technology Evangelist at Oracle
specializing in UI and co-author of the Pro JavaFX Platform
2 title, which is the leading technical reference for JavaFX.
He has been featured at Java conferences around the world
including Devoxx, Codemash, OSCON, J-Fall, GeeCON,
Jazoon,	and	JavaOne,	where	he	twice	received	a	Rock	Star	
Award.	In	his	evenings	and	weekends,	Stephen	is	an	open-

source	hacker,	working	on	projects	including	ScalaFX,	a	DSL	for	JavaFX	
in the Scala language, Visage,	a	UI	oriented	JVM	language,	JFXtras,	a	
JavaFXcomponent and extension library, and Apropos, an Agile Project
Portfolio scheduling tool written in JavaFX. Stephen can be followed on
twitter@steveonjava and reached via his blog: http://steveonjava.com/

Pro JavaFX 2:

In	Pro	JavaFX	2:	A	Definitive	Guide	to	Rich	Clients	
with	Java	Technology,	Jim	Weaver,	Weiqi	Gao,	
Stephen Chin, Dean Iverson, and Johan Vos show
you how you can use the JavaFX platform to
create rich-client Java applications. You’ll see how
JavaFX provides a powerful Java-based UI platform
capable of handling large-scale data-driven business
applications. http://www.apress.com/

ABOUT THE AUTHOR

150

Scala Collections
Opa
Machine Learning
Clean Code

ADDITIONAL RESOURCES

•	 JavaFX API documentation: http://docs.oracle.com/javafx/2.0/
 api/index.html

•	 	 JavaFX	FXML	introduction:	http://docs.oracle.com/javafx/2.0/
	 api/javafx/fxml/doc-files/introduction_to_fxml.html

•	 JavaFX CSS reference guide: http://docs.oracle.com/
	 javafx/2.0/api/javafx/scene/doc-files/cssref.html

•	 JFXtras, utilities and add-ons for JavaFX: http://jfxtras.org/

•	 Pro	JavaFX	Platform	2	book	with	free	samples	for	download:		
 http://projavafx.com/

•	 Examples	and	news	direct	from	the	JavaFX	team:	
 http://fxexperience.com/

•	 		 My	blog	covering	all	things	JavaFX:	http://steveonjava.com/

Compatible JVM language libraries:

•	 Scala language bindings: http://scalafx.org/

•	 Groovy language bindings: http://groovyfx.org/

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.apress.com/9781430268727
http://www.apress.com/9781430268727
http://code.google.com/p/scalafx/
http://code.google.com/p/visage/
http://code.google.com/p/jfxtras/
http://code.google.com/p/apropos/
http://twitter.com/#%21/steveonjava
http://www.apress.com/9781430268727
http://docs.oracle.com/javafx/2.0/api/index.html
http://docs.oracle.com/javafx/2.0/api/index.html
http://docs.oracle.com/javafx/2.0/api/javafx/fxml/doc-files/introduction_to_fxml.html
http://docs.oracle.com/javafx/2.0/api/javafx/fxml/doc-files/introduction_to_fxml.html
http://docs.oracle.com/javafx/2.0/api/javafx/scene/doc-files/cssref.html
http://docs.oracle.com/javafx/2.0/api/javafx/scene/doc-files/cssref.html
http://jfxtras.org/
http://projavafx.com/
http://fxexperience.com/
http://steveonjava.com/
http://scalafx.org/
http://groovyfx.org/

