S
O
O
N
J)
el
©
O
G
(O}
il
5=
o
>
N
O
1 S
©
[S)
(el
Q
o
()
1S
(o)
=
e
()
O

JavaFX 2.0

~+! DZone Refcardz

brought to you by...

AnsvserHub

Connecting People With Knowledge

= What is JavaFX

= JEX Poetry, A simple example
* Loading an image

= Displaying text with effects

= Animated transitions

® Interacting with controls

* Finishing with media & more...

JavaFX 2.0

By Stephen Chin

WHAT IS JAVAFX?

JavaFX is an exciting new platform for building Rich Internet Applications
with graphics, animation, and media. Starting with JavaFX 2.0, all the APIs
are written in pure Java, which lets you write JavaFX applications directly
in a language you are already familiar with. This Refcard will help you

get started writing JavaFX applications and also serve as a convenient
reference to some of the more advanced APls.

To get started, download the latest JavaFX SDK from the JavaFX website at
http://javafx.com/

If you are new to JavaFX, the easiest way to get started is to download
the NetBeans bundle. This gives you full IDE support for writing JavaFX
applications out of the box, including library setup, deployment options,
and an integrated Ul debugger. However, it is possible to do everything
from your favorite IDE, such as Eclipse or IntelliJ, or the command line
directly.

JFXPOETRY, A SIMPLE EXAMPLE

To illustrate how easy it is to build an application that melds graphics,
text, animation, and media, we will start with a simple tutorial. The goal
will be to write an application that:

Loads and displays an image from the internet
Displays and animates a verse of poetry
Makes use of graphic effects

Plays media asynchronously

For the JEXPoetry theme, we will use “Pippa’s Song”, a well known
excerpt from Robert Browning's Pippa Passes.

Beginning with a Stage

Stage and Scene are the building blocks of almost every JavaFX program.
A Stage can either be represented as a Frame for desktop applications or
a rectangular region for applications embedded in a browser. The visual
content of a Stage is called a Scene, which contains a parent node that

is the root of a graph or tree of the rest of the elements called the scene
graph. The following program creates a basic Stage and Scene with a
StackPane layout as the root element:

public class JFXPoetry extends Application {
public static void main(String[] args) {
launch(args);

@Override

public void start(Stage stage) {
stage.setTitle(“Pippa’s Song by Robert Browning”);
stage.setResizable(false);

StackPane root = new StackPane();
stage.setScene(new Scene(root, 500, 375));
// add additional code here

stage.show();

This code illustrates the basic template for creating any JavaFX
application. The necessary elements are:

. A class that extends javafx.application.Application

. A Java main method that calls the launch helper method

. An implementation of the start method that takes the primary
stage

The start method is guaranteed to be called on the JavaFX Ul thread, so
you can take care of scene graph manipulation and finally show the Stage
when you are ready. Compiling and running this application will create

a window with the title “Pippa’s Song by Robert Browning” as shown in
Figure 1.

The JavaFX scene graph is an extremely powerful concept, which
can be used to apply transformations and effects that change the

rendering of all the child nodes.

800 Pippa's Song by Robert Browning

Figure 1. A simple Stage with a descriptive title

Enterprise Q&A What's That?

Is It Like A Private
StackOverflow?

Find Out Why Guru.com, Unity3D

and DynDNS all use AnswerHub

AnsvyerHub.com

DZone, Inc. | www.dzone.com

http://www.dzone.com
http://www.refcardz.com
http://javafx.com/
http://www.refcardz.com
http://txt.couchware.com/medias/jump?hid=2623&cid=449&mid=807

AnsywyerHub

Connecting People With Knowledge

A3 DZone Refcardz

2 JavaFX 2.0

LOADING AN IMAGE

Loading and displaying images in JavaFX is extremely easy to do.

The Image class allows you to load an image from a local file or a

remote server simply by specifying the URL. This can then be set on an
ImageView to be displayed inside of a Scene. The following code should
be added before showing the Stage in replacement of the “add additional
code here” comment:

Image image = new Image(*“http://farm1.static.flickr.com/39/121693644_75491b23b0.
Ipg");

ImageView imageView = new ImageView(image);

root.getChildren().add(imageView);

Notice that to add the Image element to the root StackPane, you must
first get the list of children and then add an element. This is a common
pattern used throughout the JavaFX APIs that is possible because of
Observable Lists where any change to the list contents is automatically
updated in the Ul.

For the background image, we have chosen a picture of a misty morning
in Burns Lake, BC, Canada taken by Duane Conlon. The running example
can be seen in Figure 2.

Pippa's Song by Robert Browning

Figure 2. Image loaded from the network

DISPLAYING TEXT WITH EFFEC

Displaying Text in JavaFX is as simple as constructing a Text Node and
passing in a String to the constructor. There are many properties available
on Text; however, for this example, we will set the font and fill color and
add a Drop Shadow effect to make the text stand out on the background.

Text text
= new Text(

“The year's at the spring,\n” +

“And day’s at the morn;\n” +

“Morning’s at seven;\n” +

“The hill-side’s dew-pearled;\n” +

“The lark’s on the wing;\n" +

“The snail’s on the thorn;\n” +

“God'’s in His heaven--In" +

“All’'s right with the world!”);
text.setFont(Font.font(“Serif”, FontWeight. BOLD, 30));
text.setFill(Color GOLDENROD);
text.setEffect(DropShadowBuilder.create().radius(3).spread(0.5).build());
text.setCache(true);
root.getChildren().add(text);

By using the cache property on Node, you can improve performance
and avoid rendering artifacts during animation.

To create the DropShadow in the above code, we chose to use the builder
syntax, which is a fluent API for creating JavaFX Ul elements. Every JavaFX
class has a builder peer that can be used to set properties by chaining
method calls and will return an instance of the class when the final build
method is invoked. This allows us to change the radius and spread
properties of the DropShadow in order to accentuate the letters. Figure 3
shows the updated example with Text overlaid on the Image.

Pippa's Song by Robert Browning

'he hill-sic

'Sdenspearled:

I'he lark's on the wine:

'he snail's on*th'e*thoRne
God!siinglisgh
\ll'S'right

—_

cavel--

withithemnvonld!

Figure 3. Updated example with a Text overlay
JavaFX offers a large set of graphics effects that you can easily apply to
nodes to create rich visual effects. Table 1 lists all the available effects you

can choose from.

Table 1. Graphics effects available in JavaFX

Transition Description

Blend Blends two inputs together using a pre-defined BlendMode

Bloom Makes brighter portions of the node appear to glow

BoxBlur Fast blur with a configurable quality threshold

ColorAdjust Per-pixel adjustments of hue, saturation, brightness, and
contrast

Colorlnput Fills a rectangular region with the given Color

DisplacementMap Shifts each pixel by the amount specified in a displacement
map

DZone, Inc.

| www.dzone.com

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

@ DZone Refcardz AnsverHub 3 JavaFX 2.0

Connecting People With Knowledge

Table 2 lists all of the available transitions that are part of the JavaFX

DropShadow Displays an offset shadow underneath the node A . A
API. To get a feel for how the different transitions work, try adding a
GaussianBlur Blurs the node with a configurable radius FadeTransition that will gradually fade the background in over a five-
second duration.

Glow Makes the node appear to glow with a given intensity level

Imagelnput Passes an image through to a chained effect Table 2. Transitions Supported by JavaFX

InnerShadow Draws a shadow on the inner edges of the node Transition DeSCfiPtion

Lighting Simulates a light source to give nodes a 3D effect FadeTransition Changes the opacity of a node over time

MotionBlur Blurs the image at a given angle to create a motion effect FillTransition Animates the fill color of a shape
ParallelTransiti Pl f transitions i llel

PerspectiveTransform Maps a node to an arbitrary quadrilateral for a perspective arafieriransition SIS EBERENED CTUENEUENS [0 (Al

effect PathTransition Animates nodes along a Shape or Path
Reflecti Displ inverted vi f the node t: t flected
erection eflfsepctays an invertedview orthe node to create a refiecte PauseTransition Executes an action after the specified delay

SepiaTone Creates a sepia tone effect to mimic aged photographs RotateTransition Changes the rotation of a node over time

Shadow Similar to a DropShadow but without the overlaid image ScaleTransition Changes the size of a node over time
SequentialTransition Plays a sequence of transitions in series
StrokeTransition Animates the stroke width of a shape

ANIMATED TRANSITIONS

TranslateTransition Changes the position of a node over time

Animations in JavaFX can be accomplished either by setting up a Timeline
from scraFclh or by using one of the prefabrlcated Transmon's: To animate
the Text rising onto the screen, we will use a TranslateTransition, which

adjusts the position of a node in a straight line for the specified duration:
The JavaFX 2 release features a complete library of skinnable controls that
give you everything you will need for most web and business applications.
final TranslateTransition translate = Translate TransitionBuilder.create() Table 3 lists some of the controls and what they can be used for.

.duration(Duration.seconds(24))
.node(text)

_fromY{(image.getHeight()) Control Description
.toY(0)
.interpolator(Interpolator. EASE_OUT)
_build();

translate.play();

Accordion The Accordion control lets you display a list

of nodes that can be expanded by clicking

the title. Since the title and content areas
String are both JavaFX nodes, you can embed

» Node 3 images, controls, and even media in the

accordion.

Every JavaFX class has a matching builder, which you can use to . Button #avaFX butTOHS are exltremely”versatile a?d
make your code more readable when setting multiple properties. Click Me! YOS SE] Tk s
style including color, text, shape, and even
images.

. CheckBox The CheckBox control is a specialized type
Simple checkbox of button that includes a label text and a

By setting an interpolator of EASE_OUT, the text will start at full speed Cheﬁk 55'2““3”_ a(;ef that Cat” le Ch‘?Ckefd'
and gliadually deaccelerate as it approaches its delstinatioln Tolrun Fhe ;th:tce Eeh:\r“:r (SIS Sl el
transition, all you need to do is call the play() function, which will animate

the text as shown in Figure 4 ChoiceBox A ChoiceBox allows selection from a list of
: Dog - pre-defined items using a drop-down menu.
This control supports a null (or undefined)
e 00n Pippa's Song by Robert Browning state and sets the selected item to some-

thing that is not in the list.

Hyperlink Hyperlinks are a special type of button that

H mimic the behavior of a hyperlink in a web
H erllnk browser. This includes rollover animation
and a special style for visited links.

) Label A label is a basic control for displaying
sSim ple label read-only text. It supports ellipses for
content that is too long to be displayed
and keyboard mnemonics for creating ac-
cessible Uls.

ListView The JavaFX ListView lets you display a verti-
cal or horizontal list of items and is backed
by an Observable List that will update
automatically update the Ul when the con-
tents change. You can display Strings or any
other type of object in a List by providing
your own cell factory that converts objects
into JavaFX nodes for display. Also, the list
control supports single selection or multiple
\ I 01 l]l ”:' S at'seven: 2 y 22|:§;c;<z:ii“i;istswhereyoucaneditthe

['he vear's at'the Sprime

\ nd;daygsgatathegmonn:

| hL]]I l|f\]I,|L' X (JL'*IDL"I] |L'li x [r— ProgressBar The ProgressBar control gives feedback
during long-running operations using a hori-
zontal progress bar. This can either be as a
percentage of complete when the duration
is known or an indeterminate animation.

DZone, Inc. | www.dzone.com

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

AnswverHub

Connecting People With Knowledge

A3 DZone Refcardz

JavaFX 2.0

The Progressindicator control has the same
‘ ~ functionality as the ProgressBar, except
' it displays the progress either as a small

Progressindicator

pie graph or an indeterminate spinning
animation.

The JavaFX RadioButton behaves like a
two-state checkbox when used alone, but it
is more commonly added to a ToggleGroup
where only one of a set of radio buttons can
be active at a time.

RadioButton

TableView The TableView is a very powerful table
component for JavaFX that supports a
two-dimensional grid of cells with column
headers, column resizing, column reorder-
ing, multi-column sorting, nested columns,
cell spans, editable cells, and many more
features.

TabPane A TabPane displays a list of Tabs, only one
of which can be active and displayed at a
given time. The list can be positioned along
the top, left, right, or bottom of the content
area. If there are more tabs than fit, they will

be displayed in a drop-down menu.

TextField/
TextArea/
PasswordField

JavaFX provides a complete set of editable
text area controls, including a basic one-line
TextField, a multi-line TextArea, and a spe-
cialized PasswordField that masks characters
as they are entered.

The ToolBar lets you create a horizontal

or vertical list of nodes styled like a typical
application toolbar. You can add any type of
node to the toolbar, but it is common to use
different types of buttons spaced out with
separators.

ToolBar

m Options

The TreeView shows a hierarchical view

of Treeltems with controls to allow each
level to be expanded in place. To create a
TreeView with multiple top-level nodes, you
can set showRoot to false, which will hide
the top-most element of the model. Like
the ListView control, it supports custom cell
factories to display different content types
inline.

¥ Root node [lecti=y

Child Node 1

Child Node 2
»Child Node 3

In addition to these controls, JavaFX also supports a ScrollPane, Separator,
Slider, SplitPane, Tooltip, Menu, HTMLEditor, and WebView. All of the
JavaFX controls are fully skinnable, allowing you to customize the look and
feel to match the design of your application using CSS or a custom Skin
class.

The simplest control to use is a Button, which can easily be scripted to
play the animation sequence again from the beginning. Adding a button
to the scene graph is as simple as calling the constructor with the button
text and adding it to the list of children.

Button play = new Button(“Play Again”);
root.getChildren().add(play);
play.visibleProperty().bind(translate.statusProperty()
.isEqualTo(Animation.Status.STOPPED));
play.addEventHandler(ActionEvent. ACTION,
new EventHandler<ActionEvent>() {
@0Override
public void handle(ActionEvent event) {
translate.playFromStart();
// Uncomment once you finish the next section on Media:
//mediaPlayer.stop();
//mediaPlayer.play();
}
b

To automatically hide the button while animation is in progress and show
it after the animation completes, we make use of binding, a very powerful
JavaFX feature that is exposed via a new set of APls in JavaFX 2. By
binding the visible property of the button to the animation status of the
translation transition, the button will be shown as soon as the animation
finishes.

Binding is a great alternative for event listeners and callbacks,

because it allows you to create dynamic content with very little code.

Following this, we make use of an ActionEvent handler to play the
animation and the media from the start, which is triggered once the
button shown in Figure 5 is clicked.

8 00O Pippa's Song by Robert Browning

Figure 5: Button Control to Play the Animation Again

FINISHING WITH MEDIA

The finishing touch is to add some audio to the application. JavaFX has
built-in media classes that make it very simple to play audio or video either
from the local files or streaming off the network. To complete the example,
we will add in a public domain clip of Indigo Bunting birds chirping in the
background. Adding in the audio is as simple as creating a Media object
with the source set to the URL and wrapping that in a MediaPlayer with
autoPlay set to true.

Media media = new Media(“http.//video.fws.gov/sounds/35indigobunting.mp3”);
final MedliaPlayer mediaPlayer = new MediaPlayer(media);
mediaPlayer.play();

Besides loading media off a network, you can also access local files or

resources in the application jar.

In this example, we are using an mp3 file, which is supported across
platforms by JavaFX. Table 3 lists some of the common media formats
supported by JavaFX, including all the cross-platform formats.

Table 3. Common Media Formats Supported by JavaFX

Type Format File Extension
Audio MPEG-1, 2, 2.5 Audio Layer 3 mp3

Audio Waveform Audio Format wav

Audio Audio Interchange File Format aif, aiff

Video Flash Video: VP6 video with MP3 audio | flv, fdv

Video FX Media: VP6 video with MP3 audio fxm

Note: This Refcard covers the latest changes through JavaFX 2.0.3. In
addition to what is mentioned here, Oracle has announced support for
AAC audio and H.264 video coming in JavaFX 2.1.

To try the completed example, complete with animation and audio, click
the following url: http://steveonjava.com/refcard/JFXPoetry.jnlp

DZone, Inc.

| www.dzone.com

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
ttp://steveonjava.com/refcard/JFXPoetry.jnlp

AnsywyerHub

Connecting People With Knowledge

A3 DZone Refcardz

JavaFX 2.0

FXML AND CssS

In addition to writing applications in pure Java, JavaFX also supports a
declarative markup format called FXML. Additionally, JavaFX lets you use
CSS (cascading style sheets) to define control and component styles. The
combination of FXML and CSS allows you to specify your user interface in
a declarative and designer-friendly format while keeping your application
logic in the Java language.

The following code snippet shows the JFEXPoetry application converted to
FXML

<StackPane prefHeight="375" prefWidth="500"
xmins:tx="http.//javafx.com/fxml”
fx:controller="steveonjava.Controller”>
<children>
<ImageView fx:id="imageView">

</ImageView>
<Text fx:id="text” cache="true” text="
The year's at the spring,
..."/>
<Button fx:id="button” text="Play Again” onAction="#replay’/>
</children>
</StackPane>

Notice that the element names match the JavaFX classes and that the
attributes align with the properties of those classes. For complex types,
you can instead specify them as nested elements, which allows you to
create the scene graph hierarchy declaratively and specify complex types
such as Images.

The fx namespace is defined in the root element and used to hook up a

controller class that has the Java application logic to play the animations
and media. The controller code is the same as shown earlier, so we have
reduced the code to just the stub methods in the following listing:

public class Controller implements Initializable {
private TranslateTransition translate;
private FadeTransition fade;
private MediaPlayer mediaPlayer;
@FXML private Text text;
@FXML private Image image;
@FXML private ImageView imageView;
@FXML private Button button;
@FXML private void replay(ActionEvent event) {...}
@Override public void initialize(URL url, ResourceBundle rb) {...}

The variables annotated with @FXML will get their values injected by the
elements in the FXML file with the matching fx:id tags. Any method in the
controller can be hooked up as an event handler, which is demonstrated
by the replay method that is wired up to the onAction event of the button
element in the FXML. Finally, you can override the initialize method to

do application setup after all the variables have been initialized, such as
setting up the transitions, binding, and media for this poetry example.

The FXML file is complemented by a CSS file that defines the styles for the
application elements, as shown in the following listing:

#text {

-fx-font-family: serif;

-fx-font-weight: bold;

-fx-font-size: 30pt;

-fx-fill: goldenrod;

-fx-effect: dropshadow(three-pass-box, black, 3, .5, 0, 0);
}

#button {
-fx-background-color: linear-gradient(darkorange, derive(darkorange, -80%));
-fx-background-radius: 24;
-fx-padding: 12;
-fx-font-size: 16pt;
-fx-font-weight: bold;
-fx-text-fill: white;

Note: Notice that the text fill is specified differently for a Text element
(which inherits the Shape —fx-fill attribute) vs. a Button (which inherits the
Control —fx-text-fill attribute)

JavaFX stylesheets are based on the W3C CSS2.1 specification with some
additions inspired from CSS3. In addition, many JavaFX-specific properties
are exposed by prefixing the property name with “-fx-", as shown in

the above example to set the font size, fill, and drop shadow effect. In
addition, the above CSS includes a new styling for the “Play Again”
button so it matches the overall theme of the application better.

The final step is to load the FXML and CSS files in the start method of your
application, as shown in the following code:

Parent root = FXMLLoader.load(().getResource("JFXPoetry.txml”));
Scene scene = new Scene(root);
scene.getStylesheets().add(().getResource("JFXPoetry.css”).toExternalForm());

Notice that the FXML loader expects a URL, while the stylesheet list on
Scene is of type String. To convert a URL to a String for the stylesheet,
you can call toExternalForm to get the correct URI syntax for the resource
you are loading. Upon running you can see the new CSS button design as
shown in Figure 6.

8 00 Pippa's Song by Robert Browning

|)t,".l[IL'lfﬁ

[he hill-Sismmas
Play Again '

lark's WINO;
snail's on"thc*th'o'fn%
God!s, ingHisgheaven--

All'sS right'withithemvorldis

Figure 6: FXML version of JFEXPoetry with a CSS-styled button

To try the completed FXML example, complete with animation and audio,
click the following url: http://steveonjava.com/refcard/JFXPoetry-FXML.jnlp

For both the Java and FXML versions of this application, you can find the
source code on GitHub: https://github.com/steveonjava/JFXPoetry

If you are a JVM language fan, you can also code your application
in Scala, Groovy, Visage, or other languages that compile to JVM

APl REFERENCE

An easy way to view and navigate the full JavaFX APl is to use the
Ensemble sample application. This comes with the JavaFX SDK and can
be launched by double clicking the Ensemble.jar in the samples folder.
Figure 7 shows what the Ensemble application looks like when you first
open it.

DZone, Inc. | www.dzone.com

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://steveonjava.com/refcard/JFXPoetry-FXML.jnlp
https://github.com/steveonjava/JFXPoetry

AX DZone Refcardz AnswerHub 6 JavaFX 2.0

g People With Koy

ADDITIONAL RESOURCES

° JavaFX APl documentation: http://docs.oracle.com/javafx/2.0/
api/index.html

o JavaFX FXML introduction: http://docs.oracle.com/javafx/2.0/
api/javafx/fxml/doc-files/introduction_to_fxml.html

o JavaFX CSS reference guide: http://docs.oracle.com/
javafx/2.0/api/javafx/scene/doc-files/cssref.html

° JFXtras, utilities and add-ons for JavaFX: http://jfxtras.org/

o Pro JavaFX Platform 2 book with free samples for download:
http://projavafx.com/

o Examples and news direct from the JavaFX team:
Figure 7: JavaFX Ensemble application http://fxexperience.com/
Ensemble comes with live code samples of all the major features of ° My blog covering all things JavaFX: http://steveonjava.com/

JavaFX as well as an inline APl documentation viewer, which makes use of
the new WebView component that provides a full-featured, embeddable
browser that you can use in your own applications.

Compatible JVM language libraries:

o Scala language bindings: http://scalafx.org/
o Groovy language bindings: http://groovyfx.org/
ABOUT THE AUTHOR RECOMMENDED BOOK

Pro JavaFX 2:

In Pro JavaFX 2: A Definitive Guide to Rich Clients
with Java Technology, Jim Weaver, Weiqi Gao,
Stephen Chin, Dean Iverson, and Johan Vos show
you how you can use the JavaFX platform to

create rich-client Java applications. You'll see how
JavaFX provides a powerful Java-based Ul platform
capable of handling large-scale data-driven business
applications. http://www.apress.com/

Stephen Chin is a Java Technology Evangelist at Oracle
specializing in Ul and co-author of the Pro JavaFX Platform
2 title, which is the leading technical reference for JavaFX.
He has been featured at Java conferences around the world
including Devoxx, Codemash, OSCON, J-Fall, GeeCON,
Jazoon, and JavaOne, where he twice received a Rock Star
Award. In his evenings and weekends, Stephen is an open-
source hacker, working on projects including ScalaFX, a DSL for JavaFX

in the Scala language, Visage, a Ul oriented JVM language, JFXtras, a
JavaFXcomponent and extension library, and Apropos, an Agile Project
Portfolio scheduling tool written in JavaFX. Stephen can be followed on
twitter@steveonjava and reached via his blog: http://steveonjava.com/

‘ez Browse our collection of over 150 Free Cheat Sheets

Getting Started with
Cloud Computing

Upcoming Refcardz

Scala Collections

Free PDF L

Clean Code

DZone, Inc. ISBN-13: 978-1-93L502-50-9

150 Preston Executive Dr. ISBN-10: 1-93L502-50-X

Suite 200 50795

Cary, NC 27513
DZone communities deliver over 6 million pages each month to 888.678.0399
more than 3.3 million software developers, architects and decision 919.678.0300
make‘rs. DZone offers something for ev‘eryone, including news, Refcardz Feedback Welcome -
tutorials, cheat sheets, blogs, feature articles, source code and more. o
“DZone is a developer’s dream,” says PC Magazine. refcardz@dzone.com 19367502 >

Sponsorship Opportunities
Copyright © 2011 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a

retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, sales@dzone.com VerSiOn 1 O
without prior written permission of the publisher.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.apress.com/9781430268727
http://www.apress.com/9781430268727
http://code.google.com/p/scalafx/
http://code.google.com/p/visage/
http://code.google.com/p/jfxtras/
http://code.google.com/p/apropos/
http://twitter.com/#%21/steveonjava
http://www.apress.com/9781430268727
http://docs.oracle.com/javafx/2.0/api/index.html
http://docs.oracle.com/javafx/2.0/api/index.html
http://docs.oracle.com/javafx/2.0/api/javafx/fxml/doc-files/introduction_to_fxml.html
http://docs.oracle.com/javafx/2.0/api/javafx/fxml/doc-files/introduction_to_fxml.html
http://docs.oracle.com/javafx/2.0/api/javafx/scene/doc-files/cssref.html
http://docs.oracle.com/javafx/2.0/api/javafx/scene/doc-files/cssref.html
http://jfxtras.org/
http://projavafx.com/
http://fxexperience.com/
http://steveonjava.com/
http://scalafx.org/
http://groovyfx.org/

