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By Ricky Ho

INTRODUCTION

Predictive Analytics is about predicting future outcome based on 
analyzing data collected previously.  It includes two phases:

1.	 Training phase: Learn a model from training data
2.	 Predicting phase: Use the model to predict the 		
	 unknown or future outcome

PREDICTIVE MODELS

We can choose many models, each based on a set of different 
assumptions regarding the underlying distribution of data.
Therefore, we are interested in two general types of problems 
in this discussion: 1. Classification—about predicting a category 
(a value that is discrete, finite with no ordering implied), and 2. 
Regression—about predicting a numeric quantity (a value that’s 
continuous and infinite with ordering).

For classification problems, we use the “iris” data set and predict 
its “species” from its “width” and “length” measures of sepals 
and petals.  Here is how we set up our training and testing data:

> summary(iris)
  Sepal.Length       Sepal.Width        Petal.Length    Petal.Width      
 Min.   :4.300000   Min.   :2.000000   Min.   :1.000   Min.   :0.100000  
 1st Qu.:5.100000   1st Qu.:2.800000   1st Qu.:1.600   1st Qu.:0.300000  
 Median :5.800000   Median :3.000000   Median :4.350   Median :1.300000  
 Mean   :5.843333   Mean   :3.057333   Mean   :3.758   Mean   :1.199333  
 3rd Qu.:6.400000   3rd Qu.:3.300000   3rd Qu.:5.100   3rd Qu.:1.800000  
 Max.   :7.900000   Max.   :4.400000   Max.   :6.900   Max.   :2.500000  
       Species  
 setosa    :50  
 versicolor:50  
 virginica :50  
                
> head(iris)
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa
2          4.9         3.0          1.4         0.2  setosa
3          4.7         3.2          1.3         0.2  setosa
4          4.6         3.1          1.5         0.2  setosa
5          5.0         3.6          1.4         0.2  setosa
6          5.4         3.9          1.7         0.4  setosa
> 
> # Prepare training and testing data
> testidx <- which(1:length(iris[,1])%%5 == 0)

> iristrain <- iris[-testidx,]
> iristest <- iris[testidx,]

To illustrate a regression problem (where the output we predict 
is a numeric quantity), we’ll use the “Prestige” data set imported 
from the “car” package to create our training and testing data.

> library(car)
> summary(Prestige)
   education            income              women         
 Min.   : 6.38000   Min.   :  611.000   Min.   : 0.00000  
 1st Qu.: 8.44500   1st Qu.: 4106.000   1st Qu.: 3.59250  
 Median :10.54000   Median : 5930.500   Median :13.60000  
 Mean   :10.73804   Mean   : 6797.902   Mean   :28.97902  
 3rd Qu.:12.64750   3rd Qu.: 8187.250   3rd Qu.:52.20250  
 Max.   :15.97000   Max.   :25879.000   Max.   :97.51000  
    prestige            census           type   
 Min.   :14.80000   Min.   :1113.000   bc  :44  
 1st Qu.:35.22500   1st Qu.:3120.500   prof:31  
 Median :43.60000   Median :5135.000   wc  :23  
 Mean   :46.83333   Mean   :5401.775   NA’s: 4  
 3rd Qu.:59.27500   3rd Qu.:8312.500            
 Max.   :87.20000   Max.   :9517.000            
> head(Prestige)
                    education income women prestige census type
gov.administrators      13.11  12351 11.16     68.8   1113 prof
general.managers        12.26  25879  4.02     69.1   1130 prof
accountants             12.77   9271 15.70     63.4   1171 prof
purchasing.officers     11.42   8865  9.11     56.8   1175 prof
chemists                14.62   8403 11.68     73.5   2111 prof
physicists              15.64  11030  5.13     77.6   2113 prof
> testidx <- which(1:nrow(Prestige)%%4==0)
> prestige_train <- Prestige[-testidx,]
> prestige_test <- Prestige[testidx,]

LINEAR REGRESSION

Linear regression has the longest, most well-understood history 
in statistics, and is the most popular machine learning model.  
It is based on the assumption that a linear relationship exists 
between the input and output variables, as follows: 

y = Ө0 + Ө1x1 +  Ө 2x2 + …     	          

…where y is the output numeric value, and xi is the input numeric 
value.
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The learning algorithm will learn the set of parameters such that 
the sum of square error (yactual - yestimate)2 is minimized.
Here is the sample code that uses the R language to predict the 
output “prestige” from a set of input variables:

> model <- lm(prestige~., data=prestige_train)
> # Use the model to predict the output of test data
> prediction <- predict(model, newdata=prestige_test)
> # Check for the correlation with actual result
> cor(prediction, prestige_test$prestige)
[1] 0.9376719009
> summary(model)
Call:
lm(formula = prestige ~ ., data = prestige_train)
Residuals:
        Min          1Q      Median          3Q         Max 
-13.9078951  -5.0335742   0.3158978   5.3830764  17.8851752 
Coefficients:
                  Estimate     Std. Error  t value     Pr(>|t|)    
(Intercept) -20.7073113585  11.4213272697 -1.81304    0.0743733 .  
education     4.2010288017   0.8290800388  5.06710 0.0000034862 ***
income        0.0011503739   0.0003510866  3.27661    0.0016769 ** 
women         0.0363017610   0.0400627159  0.90612    0.3681668    
census        0.0018644881   0.0009913473  1.88076    0.0644172 .  
typeprof     11.3129416488   7.3932217287  1.53018    0.1307520    
typewc        1.9873305448   4.9579992452  0.40083    0.6898376    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Residual standard error: 7.41604 on 66 degrees of freedom
  (4 observations deleted due to missingness)
Multiple R-squared: 0.820444,   Adjusted R-squared: 0.8041207 
F-statistic: 50.26222 on 6 and 66 DF,  p-value: < 0.00000000000000022204 

The coefficient column gives an estimation of ƟӨi, and an 
associated p-value gives the confidence of each estimated ƟӨi.  
For example, features not marked with at least one * can be 
safely ignored.

In the above model, education and income has a high influence 
to the prestige.

The goal of minimizing the square error makes linear regression 
very sensitive to outliers that greatly deviate in the output.  It is 
a common practice to identify those outliers, remove them, and 
then rerun the training.

LOGISTIC REGRESSION

In a classification problem, the output is binary rather than 
numeric.  We can imagine doing a linear regression and then 
compressing the numeric output into a 0..1 range using the logit 
function  1/(1+e-t), shown here:

 

y = 1/(1 + e -(Ө 0 + Ө1 x 1 +ƟӨ2 x 2 + …))   
  
…where y is the 0 .. 1 value, and xi is the input numeric value.

The learning algorithm will learn the set of parameters such 
that the cost  (yactual * log yestimate + (1 - yactual) * log(1 - yestimate)) is 
minimized.

Here is the sample code that uses the R language to perform a 
binary classification using iris data.

> newcol = data.frame(isSetosa=(iristrain$Species == ‘setosa’))
> traindata <- cbind(iristrain, newcol)
> head(traindata)
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species isSetosa
1          5.1         3.5          1.4         0.2  setosa     TRUE
2          4.9         3.0          1.4         0.2  setosa     TRUE
3          4.7         3.2          1.3         0.2  setosa     TRUE
4          4.6         3.1          1.5         0.2  setosa     TRUE
6          5.4         3.9          1.7         0.4  setosa     TRUE
7          4.6         3.4          1.4         0.3  setosa     TRUE
> formula <- isSetosa ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width
> logisticModel <- glm(formula, data=traindata, family=”binomial”)
Warning messages:
1: glm.fit: algorithm did not converge 
2: glm.fit: fitted probabilities numerically 0 or 1 occurred 
> # Predict the probability for test data
> prob <- predict(logisticModel, newdata=iristest, type=’response’)
> round(prob, 3)
  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90  95 100 
  1   1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0   0   0   0 
105 110 115 120 125 130 135 140 145 150 
  0   0   0   0   0   0   0   0   0   0 

REGRESSION WITH REGULARIZATION

To avoid an over-fitting problem (the trained model fits too 
well with the training data and is not generalized enough), the 
regularization technique is used to shrink the magnitude of ƟӨi.  
This is done by adding a penalty (a function of the sum of ƟӨi) into 
the cost function.

In L2 regularization (also known as Ridge regression), Өi
2 will be 

added to the cost function.  In L1 regularization (also known as 
Lasso regression), Σ ||Өi|| will be added to the cost function.
Both L1, L2 will shrink the magnitude of Өi.  For variables that 
are inter-dependent, L2 tends to spread the shrinkage such that 
all interdependent variables are equally influential.  On the other 
hand, L1 tends to keep one variable and shrink all the other 
dependent variables to values very close to zero.  In other words, 
L1 shrinks the variables in an uneven manner so that it can also be 
used to select input variables.

Combining L1 and L2, the general form of the cost function 
becomes the following:

Cost == Non-regularization-cost + λ (α.Σ ||Ɵi|| + (1- α).Σ Ɵi
2)

Notice the 2 tunable parameters, lambda, and alpha. Lambda 
controls the degree of regularization (0 means no regularization 
and infinity means ignoring all input variables because all 
coefficients of them will be zero).  Alpha controls the degree of 
mix between L1 and L2 (0 means pure L2 and 1 means pure L1).
Glmnet is a popular regularization package.  The alpha parameter 
needs to be supplied based on the application’s need, i.e., 
its need for selecting a reduced set of variables. Alpha=1 
is preferred.  The library provides a cross-validation test to 
automatically choose the better lambda value.
Let’s repeat the above linear regression example and use 
regularization this time.  We pick alpha = 0.7 to favor L1 
regularization.

> library(glmnet)
> cv.fit <- cv.glmnet(as.matrix(prestige_train[,c(-4, -6)]), as.vector(prestige_
train[,4]), nlambda=100, alpha=0.7, family=”gaussian”)
> plot(cv.fit)
> coef(cv.fit)
5 x 1 sparse Matrix of class “dgCMatrix”
                          1
(Intercept) 6.3876684930151
education   3.2111461944976
income      0.0009473793366
women       0.0000000000000
census      0.0000000000000
> prediction <- predict(cv.fit, newx=as.matrix(prestige_test[,c(-4, -6)]))
> cor(prediction, as.vector(prestige_test[,4]))
          [,1]
1 0.9291181193

This is the cross-validation plot. It shows the best lambda with 
minimal-root,mean-square error.
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NEURAL NETWORK

A Neural Network emulates the structure of a human brain as a 
network of neurons that are interconnected to each other.  Each 
neuron is technically equivalent to a logistic regression unit.

In this setting, neurons are organized in multiple layers where 
every neuron at layer i connects to every neuron at layer i+1 and 
nothing else.  The tuning parameters in a neural network include 
the number of hidden layers (commonly set to 1), the number of 
neurons in each layer (which should be same for all hidden layers 
and usually at 1 to 3 times the input variables), and the learning 
rate.  On the other hand, the number of neurons at the output 
layer depends on how many binary outputs need to be learned.  
In a classification problem, this is typically the number of possible 
values at the output category.

The learning happens via an iterative feedback mechanism 
where the error of training data output is used to adjust the 
corresponding weights of input.  This adjustment propagates to 
previous layers and the learning algorithm is known as “back-
propagation.”  Here is an example: 

> library(neuralnet)
> nnet_iristrain <-iristrain
> #Binarize the categorical output
> nnet_iristrain <- cbind(nnet_iristrain, iristrain$Species == ‘setosa’)
> nnet_iristrain <- cbind(nnet_iristrain, iristrain$Species == ‘versicolor’)
> nnet_iristrain <- cbind(nnet_iristrain, iristrain$Species == ‘virginica’)
> names(nnet_iristrain)[6] <- ‘setosa’
> names(nnet_iristrain)[7] <- ‘versicolor’
> names(nnet_iristrain)[8] <- ‘virginica’
> nn <- neuralnet(setosa+versicolor+virginica ~ Sepal.Length + Sepal.Width + 
Petal.Length + Petal.Width, data=nnet_iristrain, hidden=c(3))
> plot(nn)
> mypredict <- compute(nn, iristest[-5])$net.result
> # Consolidate multiple binary output back to categorical output
> maxidx <- function(arr) {
+     return(which(arr == max(arr)))
+ }
> idx <- apply(mypredict, c(1), maxidx)
> prediction <- c(‘setosa’, ‘versicolor’, ‘virginica’)[idx]
> table(prediction, iristest$Species)
            
prediction   setosa versicolor virginica
  setosa         10          0         0
  versicolor      0         10         3
  virginica       0          0         7

Neural networks are very good at learning non-linear functions. 
They can even learn multiple outputs simultaneously, though 
the training time is relatively long, which makes the network 
susceptible to local minimum traps.  This can be mitigated by 
doing multiple rounds and picking the best-learned model.

SUPPORT VECTOR MACHINE

A Support Vector Machine provides a binary classification 
mechanism based on finding a hyperplane between a set of 
samples with +ve and -ve outputs.  It assumes the data is linearly 
separable.

The problem can be structured as a quadratic programming 
optimization problem that maximizes the margin subjected to 
a set of linear constraints (i.e., data output on one side of the 
line must be +ve while the other side must be -ve).  This can be 
solved with the quadratic programming technique.

http://www.refcardz.com
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If the data is not linearly separable due to noise (the majority 
is still linearly separable), then an error term will be added to 
penalize the optimization.
If the data distribution is fundamentally non-linear, the trick is 
to transform the data to a higher dimension so the data will be  
linearly separable.The optimization term turns out to be a dot 
product of the transformed points in the high-dimension space, 
which is found to be equivalent to performing a kernel function in 
the original (before transformation) space.

The kernel function provides a cheap way to equivalently 
transform the original point to a high dimension (since we don’t 
actually transform it) and perform the quadratic optimization in 
that high-dimension space.

There are a couple of tuning parameters (e.g., penalty and cost), 
so transformation is usually conducted in 2 steps—finding the 
optimal parameter and then training the SVM model using that 
parameter.  Here are some example codes in R:

> library(e1071)
> tune <- tune.svm(Species~., data=iristrain, gamma=10^(-6:-1), cost=10^(1:4))
> summary(tune)
Parameter tuning of ‘svm’:
- sampling method: 10-fold cross validation 
- best parameters:
 gamma  cost
 0.001 10000
- best performance: 0.03333333 
> model <- svm(Species~., data=iristrain, method=”C-classification”, 
kernel=”radial”, probability=T, gamma=0.001, cost=10000)
> prediction <- predict(model, iristest, probability=T)
> table(iristest$Species, prediction)
            prediction
             setosa versicolor virginica
  setosa         10          0         0
  versicolor      0         10         0
  virginica       0          3         7
>

SVM with a Kernel function is a highly effective model and works 
well across a wide range of problem sets.  Although it is a binary 
classifier, it can be easily extended to a multi-class classification 
by training a group of binary classifiers and using “one vs all” or 
“one vs one” as predictors.
 
SVM predicts the output based on the distance to the dividing 
hyperplane. This doesn’t directly estimate the probability of the 
prediction. We therefore use the  calibration technique to find a 
logistic regression model between the distance of the hyperplane 
and the binary output. Using that  regression model, we then get 
our estimation.

BAYESIAN NETWORK AND NAÏVE BAYES

From a probabilistic viewpoint, the predictive problem can be 
viewed as a conditional probability estimation; trying to find Y 
where P(Y | X) is maximized.

From the Bayesian rule, P(Y | X) == P(X | Y) * P(Y) / P(X)

This is equivalent to finding Y where P(X | Y) * P(Y) is maximized.
Let’s say the input X contains 3 categorical features— X1, X2, 
X3.  In the general case, we assume each variable can potentially 
influence any other variable.  Therefore the joint distribution 
becomes:

P(X | Y) = P(X1 | Y) * P(X2 | X1, Y) * P(X3 | X1, X2, Y)

Notice how in the last term of the above equation, the number 
of entries is exponentially proportional to the number of input 
variables.

  

Since P(X | Y) == P(X1 | Y) * P(X2 | Y) * P(X3 | Y), we need to find 
the Y that maximizes P(X1 | Y) * P(X2 | Y) * P(X3 | Y) * P(Y)

Each term on the right hand side can be learned by counting the 
training data.  Therefore we can estimate P(Y | X) and pick Y to 
maximize its value.

But it is possible that some patterns never show up in training 
data, e.g., P(X1=a | Y=y) is 0.  To deal with this situation, we 
pretend to have seen the data of each possible value one more 
time than we actually have.

P(X1=a | Y=y) == (count(a, y) + 1) / (count(y) + m)

…where m is the number of possible values in X1.

When the input features are numeric, say a = 2.75, we can assume 
X1 is the normal distribution.  Find out the mean and standard 
deviation of X1 and then estimate P(X1=a) using the normal 
distribution function. 

Here is how we use Naïve Bayes in R:
> library(e1071)
> # Can handle both categorical and numeric input variables, but output must be 
categorical
> model <- naiveBayes(Species~., data=iristrain)
> prediction <- predict(model, iristest[,-5])
> table(prediction, iristest[,5])
            
prediction   setosa versicolor virginica
  setosa         10          0         0
  versicolor      0         10         2
  virginica       0          0         8

Notice the independence assumption is not true in most 
cases.Nevertheless, the system still performs incredibly well.  
Onestrength of Naïve Bayes is that it is highly scalable and can 
learn incrementally—all we have to do is count the observed 
variables and update the probability distribution.

K-NEAREST NEIGHBORS

A contrast to model-based learning is K-Nearest neighbor. This is 
also called instance-based learning because it doesn’t even learn 
a single model.  The training process involves memorizing all the 
training data.  To predict a new data point, we found the closest 
K (a tunable parameter) neighbors from the training set and let 
them vote for the final prediction.

http://www.refcardz.com
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To determine the “nearest neighbors,” a distance function 
needs to be defined (e.g., a Euclidean distance function is a 
common one for numeric input variables).  The voting can also be 
weighted among the K-neighbors based on their distance from 
the new data point.

Here is the R code using K-nearest neighbor for classification.
> library(class)
> train_input <- as.matrix(iristrain[,-5])
> train_output <- as.vector(iristrain[,5])
> test_input <- as.matrix(iristest[,-5])
> prediction <- knn(train_input, test_input, train_output, k=5)
> table(prediction, iristest$Species)
            
prediction   setosa versicolor virginica
  setosa         10          0         0
  versicolor      0         10         1
  virginica       0          0         9
> 

The strength of K-nearest neighbor is its simplicity.  No model 
needs to be trained.  Incremental learning is automatic when 
more data arrives (and old data can be deleted as well). The 
weakness of KNN, however, is that it doesn’t handle high 
numbers of dimensions well.

DECISION TREE

Based on a tree of decision nodes, the learning approach is to 
recursively divide the training data into buckets of homogeneous 
members through the most discriminative dividing criteria 
possible.  The measurement of “homogeneity” is based on 
the output label; when it is a numeric value, the measurement 
will be the variance of the bucket; when it is a category, the 
measurement will be the entropy, or “gini index,” of the bucket.

During the training, various dividing criteria based on the input 
will be tried (and used in a greedy manner); when the input is a 
category (Mon, Tue, Wed, etc.), it will first be turned into binary 
(isMon, isTue, isWed, etc.,) and then it will use true/false as a 
decision boundary to evaluate homogeneity; when the input is 
a numeric or ordinal value, the lessThan/greaterThan at each 
training-data input value will serve as the decision boundary.

The training process stops when there is no significant gain in 
homogeneity after further splitting the Tree. The members of 
the bucket represented at leaf node will vote for the prediction; 
the majority wins when the output is a category.  The member’s 
average is taken when the output is a numeric.

Here is an example in R:
> library(rpart)
> #Train the decision tree
> treemodel <- rpart(Species~., data=iristrain)
> plot(treemodel)
> text(treemodel, use.n=T)
> #Predict using the decision tree
> prediction <- predict(treemodel, newdata=iristest, type=’class’)
> #Use contingency table to see how accurate it is
> table(prediction, iristest$Species)
prediction   setosa versicolor virginica
  setosa         10          0         0
  versicolor      0         10         3
  virginica       0          0         7
> names(nnet_iristrain)[8] <- ‘virginica’

 
Here is the Tree model that has been learned:

                 The good part of the Tree is that it can take different data types 
of input and output variables that can be categorical, binary and 
numeric values.  It can handle missing attributes and outliers 
well.  Decision Tree is also good in explaining reasoning for its 
prediction and therefore gives good insight about the underlying 
data.

The limitation of Decision Tree is that each decision boundary 
at each split point is a concrete binary decision. Also, the 
decision criteria considers only one input attribute at a time, not 
a combination of multiple input variables. Another weakness 
of Decision Tree is that once learned it cannot be updated 
incrementally. When new training data arrives, you have to throw 
away the old tree and retrain all data from scratch.  In practice, 
standalone decision trees are rarely used because their accuracy 
ispredictive and relatively low .  Tree ensembles (described 
below) are the common way to use decision trees.

TREE ENSEMBLES

Instead of picking a single model, Ensemble Method combines 
multiple models in a certain way to fit the training data.  Here are 
the two primary ways: “bagging” and “boosting.”  In “bagging”, 
we take a subset of training data (pick n random sample out of 
N training data, with replacement) to train up each model.  After 
multiple models are trained, we use a voting scheme to predict 
future data.

Random Forest is one of the most popular bagging models; in 
addition to selecting n training data out of N at each decision 
node of the tree, it randomly selects m input features from the 
total M input features (m ~ M^0.5). Then it learns a decision tree 
from that.  Finally, each tree in the forest votes for the result.

Here is the R code to use Random Forest:
> library(randomForest)
#Train 100 trees, random selected attributes
> model <- randomForest(Species~., data=iristrain, nTree=500)
#Predict using the forest
> prediction <- predict(model, newdata=iristest, type=’class’)
> table(prediction, iristest$Species)
> importance(model)
             MeanDecreaseGini
Sepal.Length         7.807602
Sepal.Width          1.677239
Petal.Length        31.145822
Petal.Width         38.617223

“Boosting” is another approach in Ensemble Method.  Instead 
of sampling the input features, it samples the training data 
records. It puts more emphasis, though, on the training data that 
is wrongly predicted in previous iterations.  Initially, each training 
data is equally weighted.  At each iteration, the data that is 
wrongly classified will have its weight increased. 

Gradient Boosting Method is one of the most popular boosting 
methods. It is based on incrementally adding a function that fits 
the residuals.

Set i = 0 at the beginning, and repeat until convergence.
•	 Learn a function Fi(X) to predict Y.  Basically, find F that 

minimizes the expected(L(F(X) – Y)), where L is the lost 
function of the residual

•	 Learning another function gi(X) to predict the gradient of 
the above function
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•	 Update Fi+1 = Fi + a.gi(X), where a is the learning rate

Below is Gradient-Boosted Tree using the decision tree as the 
learning model F.  Here is the sample code in R:

> library(gbm)
> iris2 <- iris
> newcol = data.frame(isVersicolor=(iris2$Species==’versicolor’))
> iris2 <- cbind(iris2, newcol)
> iris2[45:55,]
   Sepal.Length Sepal.Width Petal.Length Petal.Width    Species isVersicolor
45          5.1         3.8          1.9         0.4     setosa        FALSE
46          4.8         3.0          1.4         0.3     setosa        FALSE
47          5.1         3.8          1.6         0.2     setosa        FALSE
48          4.6         3.2          1.4         0.2     setosa        FALSE
49          5.3         3.7          1.5         0.2     setosa        FALSE
50          5.0         3.3          1.4         0.2     setosa        FALSE
51          7.0         3.2          4.7         1.4 versicolor         TRUE
52          6.4         3.2          4.5         1.5 versicolor         TRUE
53          6.9         3.1          4.9         1.5 versicolor         TRUE
54          5.5         2.3          4.0         1.3 versicolor         TRUE
55          6.5         2.8          4.6         1.5 versicolor         TRUE
> formula <- isVersicolor ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.
Width
> model <- gbm(formula, data=iris2, n.trees=1000, interaction.depth=2, 
distribution=”bernoulli”)
Iter   TrainDeviance   ValidDeviance   StepSize   Improve
     1        1.2714         -1.#IND     0.0010    0.0008
     2        1.2705         -1.#IND     0.0010    0.0004
     3        1.2688         -1.#IND     0.0010    0.0007
     4        1.2671         -1.#IND     0.0010    0.0008
     5        1.2655         -1.#IND     0.0010    0.0008
     6        1.2639         -1.#IND     0.0010    0.0007
     7        1.2621         -1.#IND     0.0010    0.0008
     8        1.2614         -1.#IND     0.0010    0.0003
     9        1.2597         -1.#IND     0.0010    0.0008
    10        1.2580         -1.#IND     0.0010    0.0008
   100        1.1295         -1.#IND     0.0010    0.0008
   200        1.0090         -1.#IND     0.0010    0.0005
   300        0.9089         -1.#IND     0.0010    0.0005
   400        0.8241         -1.#IND     0.0010    0.0004
   500        0.7513         -1.#IND     0.0010    0.0004
   600        0.6853         -1.#IND     0.0010    0.0003
   700        0.6266         -1.#IND     0.0010    0.0003
   800        0.5755         -1.#IND     0.0010    0.0002
   900        0.5302         -1.#IND     0.0010    0.0002
  1000        0.4901         -1.#IND     0.0010    0.0002

> prediction <- predict.gbm(model, iris2[45:55,], type=”response”, n.trees=1000)
> round(prediction, 3)
 [1] 0.127 0.131 0.127 0.127 0.127 0.127 0.687 0.688 0.572 0.734 0.722
> summary(model)
           var       rel.inf
1 Petal.Length 61.4203761582
2  Petal.Width 34.7557511871
3  Sepal.Width  3.5407662531
4 Sepal.Length  0.2831064016

The GBM R package also gave the relative importance of the 
input features, as shown in the bar graph.
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Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software 

with every change committed to a project’s version control 

repository.  

CI can be explained via patterns (i.e., a solution to a problem 

in a particular context) and anti-patterns (i.e., ineffective 

approaches sometimes used to “fi x” the particular problem) 

associated with the process. Anti-patterns are solutions that 

appear to be benefi cial, but, in the end, they tend to produce 

adverse effects. They are not necessarily bad practices, but can 

produce unintended results when compared to implementing 

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration 

efers to the “build and test” cycle, this Refcard 

expands on the notion of CI to include concepts such as 

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage 

active code lines

Codeline Policy

Developing software within a system that utilizes multiple 

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work 

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without 

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment 

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment 

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the 

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on 

brought to you by...
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Core HTMLHTML and XHTML are the foundation of all web development.  

HTML is used as the graphical user interface in client-side 

programs written in JavaScript. Server-side languages like PHP 

and Java also receive data from web pages and use HTML 

as the output mechanism. The emerging Ajax technologies 

likewise use HTML and XHTML as their visual engine. HTML 

was once a very loosely-defi ned language with very little 

standardization, but as it has become more important, the 

need for standards has become more apparent.  Regardless of 

whether you choose to write HTML or XHTML, understanding 

the current standards will help you provide a solid foundation 

that will simplify all your other web coding.  Fortunately HTML 

and XHTML are actually simpler than they used to be, because 

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.)  All are essentially plain text 

extension.  HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found, 

and the alt attribute describes alternate text that is displayed if 

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other.  Tags 

cannot overlap, so <a><b></a></b> is not legal, but <a><b></

b></a> is fi ne. 

HTML VS XHTMLHTML has been around for some time. While it has done its 

job admirably, that job has expanded far more than anybody 

expected.  Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over        Free Cheat Sheets
Upcoming Refcardz
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ABOUT CLOUD COMPUTING
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Getting Started with 
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts 
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers 
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers 
has changed substantially in recent years, especially with 
the entrance of service providers like Amazon, Google and 
Microsoft. 

These companies have long deployed web applications 
that adapt and scale to large user bases, making them 
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an 
emphasis on these providers, so you can better understand 
what it is a cloud computing platform can offer your web 
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar 
to most phone services: plans with alloted resources, with an 
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this. 
The various resources consumed by web applications (e.g. 
bandwidth, memory, CPU) are tallied on a per-unit basis 
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support 
one time events. 

Automated growth & scalable technologies
Having the capability to support one time events, cloud 
computing platforms also facilitate the gradual growth curves 
faced by web applications.

Large scale growth scenarios involving specialized equipment 
(e.g. load balancers and clusters) are all but abstracted away by 
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data 
tier technologies that exceed the precedent set by Relational 
Database Systems (RDBMS): Map Reduce, web service APIs, 
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND 
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on 
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be 
utilized by multiple operating systems. This allows resources 
(e.g. bandwidth, memory, CPU) to be allocated exclusively to 
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are 
assigned an operating system in the same way as on all hosting 
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DZone communities deliver over 6 million pages each month to 
more than 3.3 million software developers, architects and decision 
makers. DZone offers something for everyone, including news, 
tutorials, cheat sheets, blogs, feature articles, source code and more. 
“DZone is a developer’s dream,” says PC Magazine.

Ricky has spent the last 20 years developing and 
designing large scale software systems including 
software gateways, fraud detection, cloud 
computing, web analytics, and online advertising. 
He has played different roles from architect to 
developer and consultant in helping companies 

to apply statistics, machine learning, and optimization techniques to 
extract useful insight from their raw data, and also predict business 
trends. Ricky has 9 patents in the areas of distributed systems, cloud 
computing and real-time analytics. He is very passionate about 
algorithms and problem solving. He is an active blogger and maintains 
a technical blog to share his ideas at http://horicky.blogspot.com

Introduction to Data Mining covers all aspects 
of data mining, taking both theoretical and 
practical approaches to introduce a complex field 
to those learning data mining for the first time. 
Copious figures and examples bridge the gap 
from abstract to hands-on. The book requires 
only basic background in statistics, and requires 
no background in databases. Includes detailed 

treatment of predictive modeling, association analysis, clustering, 
anomaly detection, visualization, and more. http://www-users.cs.umn.
edu/~kumar/dmbook/index.php
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