

DZone, Inc. | www.dzone.com

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#158
M

ac
h

in
e

 L
e

ar
n

in
g

By Ricky Ho

INTRODUCTION

Predictive Analytics is about predicting future outcome based on
analyzing data collected previously. It includes two phases:

1.	 Training phase: Learn a model from training data
2.	 Predicting phase: Use the model to predict the 		
	 unknown or future outcome

PREDICTIVE MODELS

We can choose many models, each based on a set of different
assumptions regarding the underlying distribution of data.
Therefore, we are interested in two general types of problems
in this discussion: 1. Classification—about predicting a category
(a value that is discrete, finite with no ordering implied), and 2.
Regression—about predicting a numeric quantity (a value that’s
continuous and infinite with ordering).

For classification problems, we use the “iris” data set and predict
its “species” from its “width” and “length” measures of sepals
and petals. Here is how we set up our training and testing data:

> summary(iris)
 Sepal.Length Sepal.Width Petal.Length Petal.Width
 Min. :4.300000 Min. :2.000000 Min. :1.000 Min. :0.100000
 1st Qu.:5.100000 1st Qu.:2.800000 1st Qu.:1.600 1st Qu.:0.300000
 Median :5.800000 Median :3.000000 Median :4.350 Median :1.300000
 Mean :5.843333 Mean :3.057333 Mean :3.758 Mean :1.199333
 3rd Qu.:6.400000 3rd Qu.:3.300000 3rd Qu.:5.100 3rd Qu.:1.800000
 Max. :7.900000 Max. :4.400000 Max. :6.900 Max. :2.500000
 Species
 setosa :50
 versicolor:50
 virginica :50

> head(iris)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
>
> # Prepare training and testing data
> testidx <- which(1:length(iris[,1])%%5 == 0)

> iristrain <- iris[-testidx,]
> iristest <- iris[testidx,]

To illustrate a regression problem (where the output we predict
is a numeric quantity), we’ll use the “Prestige” data set imported
from the “car” package to create our training and testing data.

> library(car)
> summary(Prestige)
 education income women
 Min. : 6.38000 Min. : 611.000 Min. : 0.00000
 1st Qu.: 8.44500 1st Qu.: 4106.000 1st Qu.: 3.59250
 Median :10.54000 Median : 5930.500 Median :13.60000
 Mean :10.73804 Mean : 6797.902 Mean :28.97902
 3rd Qu.:12.64750 3rd Qu.: 8187.250 3rd Qu.:52.20250
 Max. :15.97000 Max. :25879.000 Max. :97.51000
 prestige census type
 Min. :14.80000 Min. :1113.000 bc :44
 1st Qu.:35.22500 1st Qu.:3120.500 prof:31
 Median :43.60000 Median :5135.000 wc :23
 Mean :46.83333 Mean :5401.775 NA’s: 4
 3rd Qu.:59.27500 3rd Qu.:8312.500
 Max. :87.20000 Max. :9517.000
> head(Prestige)
 education income women prestige census type
gov.administrators 13.11 12351 11.16 68.8 1113 prof
general.managers 12.26 25879 4.02 69.1 1130 prof
accountants 12.77 9271 15.70 63.4 1171 prof
purchasing.officers 11.42 8865 9.11 56.8 1175 prof
chemists 14.62 8403 11.68 73.5 2111 prof
physicists 15.64 11030 5.13 77.6 2113 prof
> testidx <- which(1:nrow(Prestige)%%4==0)
> prestige_train <- Prestige[-testidx,]
> prestige_test <- Prestige[testidx,]

LINEAR REGRESSION

Linear regression has the longest, most well-understood history
in statistics, and is the most popular machine learning model.
It is based on the assumption that a linear relationship exists
between the input and output variables, as follows:

y = Ө0 + Ө1x1 + Ө 2x2 + … 	

…where y is the output numeric value, and xi is the input numeric
value.

CONTENTS INCLUDE

n	 �Predictive Models
n	 Linear Regression
n	 Logisitic Regression
n	 Regression with Regularization
n	 Neural Network
n	 And more...

Big Data Machine Learning:
Patterns for Predictive Analytics

http://www.dzone.com
http://www.refcardz.com
http://txt.couchware.com/medias/jump?hid=2649&cid=455&mid=821
http://www.refcardz.com

2 Machine Learning

DZone, Inc. | www.dzone.com

The learning algorithm will learn the set of parameters such that
the sum of square error (yactual - yestimate)2 is minimized.
Here is the sample code that uses the R language to predict the
output “prestige” from a set of input variables:

> model <- lm(prestige~., data=prestige_train)
> # Use the model to predict the output of test data
> prediction <- predict(model, newdata=prestige_test)
> # Check for the correlation with actual result
> cor(prediction, prestige_test$prestige)
[1] 0.9376719009
> summary(model)
Call:
lm(formula = prestige ~ ., data = prestige_train)
Residuals:
 Min 1Q Median 3Q Max
-13.9078951 -5.0335742 0.3158978 5.3830764 17.8851752
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -20.7073113585 11.4213272697 -1.81304 0.0743733 .
education 4.2010288017 0.8290800388 5.06710 0.0000034862 ***
income 0.0011503739 0.0003510866 3.27661 0.0016769 **
women 0.0363017610 0.0400627159 0.90612 0.3681668
census 0.0018644881 0.0009913473 1.88076 0.0644172 .
typeprof 11.3129416488 7.3932217287 1.53018 0.1307520
typewc 1.9873305448 4.9579992452 0.40083 0.6898376

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 7.41604 on 66 degrees of freedom
 (4 observations deleted due to missingness)
Multiple R-squared: 0.820444, Adjusted R-squared: 0.8041207
F-statistic: 50.26222 on 6 and 66 DF, p-value: < 0.00000000000000022204

The coefficient column gives an estimation of ƟӨi, and an
associated p-value gives the confidence of each estimated ƟӨi.
For example, features not marked with at least one * can be
safely ignored.

In the above model, education and income has a high influence
to the prestige.

The goal of minimizing the square error makes linear regression
very sensitive to outliers that greatly deviate in the output. It is
a common practice to identify those outliers, remove them, and
then rerun the training.

LOGISTIC REGRESSION

In a classification problem, the output is binary rather than
numeric. We can imagine doing a linear regression and then
compressing the numeric output into a 0..1 range using the logit
function 1/(1+e-t), shown here:

y = 1/(1 + e -(Ө 0 + Ө1 x 1 +ƟӨ2 x 2 + …))

…where y is the 0 .. 1 value, and xi is the input numeric value.

The learning algorithm will learn the set of parameters such
that the cost (yactual * log yestimate + (1 - yactual) * log(1 - yestimate)) is
minimized.

Here is the sample code that uses the R language to perform a
binary classification using iris data.

> newcol = data.frame(isSetosa=(iristrain$Species == ‘setosa’))
> traindata <- cbind(iristrain, newcol)
> head(traindata)
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species isSetosa
1 5.1 3.5 1.4 0.2 setosa TRUE
2 4.9 3.0 1.4 0.2 setosa TRUE
3 4.7 3.2 1.3 0.2 setosa TRUE
4 4.6 3.1 1.5 0.2 setosa TRUE
6 5.4 3.9 1.7 0.4 setosa TRUE
7 4.6 3.4 1.4 0.3 setosa TRUE
> formula <- isSetosa ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width
> logisticModel <- glm(formula, data=traindata, family=”binomial”)
Warning messages:
1: glm.fit: algorithm did not converge
2: glm.fit: fitted probabilities numerically 0 or 1 occurred
> # Predict the probability for test data
> prob <- predict(logisticModel, newdata=iristest, type=’response’)
> round(prob, 3)
 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
105 110 115 120 125 130 135 140 145 150
 0 0 0 0 0 0 0 0 0 0

REGRESSION WITH REGULARIZATION

To avoid an over-fitting problem (the trained model fits too
well with the training data and is not generalized enough), the
regularization technique is used to shrink the magnitude of ƟӨi.
This is done by adding a penalty (a function of the sum of ƟӨi) into
the cost function.

In L2 regularization (also known as Ridge regression), Өi
2 will be

added to the cost function. In L1 regularization (also known as
Lasso regression), Σ ||Өi|| will be added to the cost function.
Both L1, L2 will shrink the magnitude of Өi. For variables that
are inter-dependent, L2 tends to spread the shrinkage such that
all interdependent variables are equally influential. On the other
hand, L1 tends to keep one variable and shrink all the other
dependent variables to values very close to zero. In other words,
L1 shrinks the variables in an uneven manner so that it can also be
used to select input variables.

Combining L1 and L2, the general form of the cost function
becomes the following:

Cost == Non-regularization-cost + λ (α.Σ ||Ɵi|| + (1- α).Σ Ɵi
2)

Notice the 2 tunable parameters, lambda, and alpha. Lambda
controls the degree of regularization (0 means no regularization
and infinity means ignoring all input variables because all
coefficients of them will be zero). Alpha controls the degree of
mix between L1 and L2 (0 means pure L2 and 1 means pure L1).
Glmnet is a popular regularization package. The alpha parameter
needs to be supplied based on the application’s need, i.e.,
its need for selecting a reduced set of variables. Alpha=1
is preferred. The library provides a cross-validation test to
automatically choose the better lambda value.
Let’s repeat the above linear regression example and use
regularization this time. We pick alpha = 0.7 to favor L1
regularization.

> library(glmnet)
> cv.fit <- cv.glmnet(as.matrix(prestige_train[,c(-4, -6)]), as.vector(prestige_
train[,4]), nlambda=100, alpha=0.7, family=”gaussian”)
> plot(cv.fit)
> coef(cv.fit)
5 x 1 sparse Matrix of class “dgCMatrix”
 1
(Intercept) 6.3876684930151
education 3.2111461944976
income 0.0009473793366
women 0.0000000000000
census 0.0000000000000
> prediction <- predict(cv.fit, newx=as.matrix(prestige_test[,c(-4, -6)]))
> cor(prediction, as.vector(prestige_test[,4]))
 [,1]
1 0.9291181193

This is the cross-validation plot. It shows the best lambda with
minimal-root,mean-square error.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://bit.ly/cypher-slide

3 Machine Learning

DZone, Inc. | www.dzone.com

NEURAL NETWORK

A Neural Network emulates the structure of a human brain as a
network of neurons that are interconnected to each other. Each
neuron is technically equivalent to a logistic regression unit.

In this setting, neurons are organized in multiple layers where
every neuron at layer i connects to every neuron at layer i+1 and
nothing else. The tuning parameters in a neural network include
the number of hidden layers (commonly set to 1), the number of
neurons in each layer (which should be same for all hidden layers
and usually at 1 to 3 times the input variables), and the learning
rate. On the other hand, the number of neurons at the output
layer depends on how many binary outputs need to be learned.
In a classification problem, this is typically the number of possible
values at the output category.

The learning happens via an iterative feedback mechanism
where the error of training data output is used to adjust the
corresponding weights of input. This adjustment propagates to
previous layers and the learning algorithm is known as “back-
propagation.” Here is an example:

> library(neuralnet)
> nnet_iristrain <-iristrain
> #Binarize the categorical output
> nnet_iristrain <- cbind(nnet_iristrain, iristrain$Species == ‘setosa’)
> nnet_iristrain <- cbind(nnet_iristrain, iristrain$Species == ‘versicolor’)
> nnet_iristrain <- cbind(nnet_iristrain, iristrain$Species == ‘virginica’)
> names(nnet_iristrain)[6] <- ‘setosa’
> names(nnet_iristrain)[7] <- ‘versicolor’
> names(nnet_iristrain)[8] <- ‘virginica’
> nn <- neuralnet(setosa+versicolor+virginica ~ Sepal.Length + Sepal.Width +
Petal.Length + Petal.Width, data=nnet_iristrain, hidden=c(3))
> plot(nn)
> mypredict <- compute(nn, iristest[-5])$net.result
> # Consolidate multiple binary output back to categorical output
> maxidx <- function(arr) {
+ return(which(arr == max(arr)))
+ }
> idx <- apply(mypredict, c(1), maxidx)
> prediction <- c(‘setosa’, ‘versicolor’, ‘virginica’)[idx]
> table(prediction, iristest$Species)

prediction setosa versicolor virginica
 setosa 10 0 0
 versicolor 0 10 3
 virginica 0 0 7

Neural networks are very good at learning non-linear functions.
They can even learn multiple outputs simultaneously, though
the training time is relatively long, which makes the network
susceptible to local minimum traps. This can be mitigated by
doing multiple rounds and picking the best-learned model.

SUPPORT VECTOR MACHINE

A Support Vector Machine provides a binary classification
mechanism based on finding a hyperplane between a set of
samples with +ve and -ve outputs. It assumes the data is linearly
separable.

The problem can be structured as a quadratic programming
optimization problem that maximizes the margin subjected to
a set of linear constraints (i.e., data output on one side of the
line must be +ve while the other side must be -ve). This can be
solved with the quadratic programming technique.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

4 Machine Learning

DZone, Inc. | www.dzone.com

If the data is not linearly separable due to noise (the majority
is still linearly separable), then an error term will be added to
penalize the optimization.
If the data distribution is fundamentally non-linear, the trick is
to transform the data to a higher dimension so the data will be
linearly separable.The optimization term turns out to be a dot
product of the transformed points in the high-dimension space,
which is found to be equivalent to performing a kernel function in
the original (before transformation) space.

The kernel function provides a cheap way to equivalently
transform the original point to a high dimension (since we don’t
actually transform it) and perform the quadratic optimization in
that high-dimension space.

There are a couple of tuning parameters (e.g., penalty and cost),
so transformation is usually conducted in 2 steps—finding the
optimal parameter and then training the SVM model using that
parameter. Here are some example codes in R:

> library(e1071)
> tune <- tune.svm(Species~., data=iristrain, gamma=10^(-6:-1), cost=10^(1:4))
> summary(tune)
Parameter tuning of ‘svm’:
- sampling method: 10-fold cross validation
- best parameters:
 gamma cost
 0.001 10000
- best performance: 0.03333333
> model <- svm(Species~., data=iristrain, method=”C-classification”,
kernel=”radial”, probability=T, gamma=0.001, cost=10000)
> prediction <- predict(model, iristest, probability=T)
> table(iristest$Species, prediction)
 prediction
 setosa versicolor virginica
 setosa 10 0 0
 versicolor 0 10 0
 virginica 0 3 7
>

SVM with a Kernel function is a highly effective model and works
well across a wide range of problem sets. Although it is a binary
classifier, it can be easily extended to a multi-class classification
by training a group of binary classifiers and using “one vs all” or
“one vs one” as predictors.

SVM predicts the output based on the distance to the dividing
hyperplane. This doesn’t directly estimate the probability of the
prediction. We therefore use the calibration technique to find a
logistic regression model between the distance of the hyperplane
and the binary output. Using that regression model, we then get
our estimation.

BAYESIAN NETWORK AND NAÏVE BAYES

From a probabilistic viewpoint, the predictive problem can be
viewed as a conditional probability estimation; trying to find Y
where P(Y | X) is maximized.

From the Bayesian rule, P(Y | X) == P(X | Y) * P(Y) / P(X)

This is equivalent to finding Y where P(X | Y) * P(Y) is maximized.
Let’s say the input X contains 3 categorical features— X1, X2,
X3. In the general case, we assume each variable can potentially
influence any other variable. Therefore the joint distribution
becomes:

P(X | Y) = P(X1 | Y) * P(X2 | X1, Y) * P(X3 | X1, X2, Y)

Notice how in the last term of the above equation, the number
of entries is exponentially proportional to the number of input
variables.

Since P(X | Y) == P(X1 | Y) * P(X2 | Y) * P(X3 | Y), we need to find
the Y that maximizes P(X1 | Y) * P(X2 | Y) * P(X3 | Y) * P(Y)

Each term on the right hand side can be learned by counting the
training data. Therefore we can estimate P(Y | X) and pick Y to
maximize its value.

But it is possible that some patterns never show up in training
data, e.g., P(X1=a | Y=y) is 0. To deal with this situation, we
pretend to have seen the data of each possible value one more
time than we actually have.

P(X1=a | Y=y) == (count(a, y) + 1) / (count(y) + m)

…where m is the number of possible values in X1.

When the input features are numeric, say a = 2.75, we can assume
X1 is the normal distribution. Find out the mean and standard
deviation of X1 and then estimate P(X1=a) using the normal
distribution function.

Here is how we use Naïve Bayes in R:
> library(e1071)
> # Can handle both categorical and numeric input variables, but output must be
categorical
> model <- naiveBayes(Species~., data=iristrain)
> prediction <- predict(model, iristest[,-5])
> table(prediction, iristest[,5])

prediction setosa versicolor virginica
 setosa 10 0 0
 versicolor 0 10 2
 virginica 0 0 8

Notice the independence assumption is not true in most
cases.Nevertheless, the system still performs incredibly well.
Onestrength of Naïve Bayes is that it is highly scalable and can
learn incrementally—all we have to do is count the observed
variables and update the probability distribution.

K-NEAREST NEIGHBORS

A contrast to model-based learning is K-Nearest neighbor. This is
also called instance-based learning because it doesn’t even learn
a single model. The training process involves memorizing all the
training data. To predict a new data point, we found the closest
K (a tunable parameter) neighbors from the training set and let
them vote for the final prediction.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

5 Machine Learning

DZone, Inc. | www.dzone.com

To determine the “nearest neighbors,” a distance function
needs to be defined (e.g., a Euclidean distance function is a
common one for numeric input variables). The voting can also be
weighted among the K-neighbors based on their distance from
the new data point.

Here is the R code using K-nearest neighbor for classification.
> library(class)
> train_input <- as.matrix(iristrain[,-5])
> train_output <- as.vector(iristrain[,5])
> test_input <- as.matrix(iristest[,-5])
> prediction <- knn(train_input, test_input, train_output, k=5)
> table(prediction, iristest$Species)

prediction setosa versicolor virginica
 setosa 10 0 0
 versicolor 0 10 1
 virginica 0 0 9
>

The strength of K-nearest neighbor is its simplicity. No model
needs to be trained. Incremental learning is automatic when
more data arrives (and old data can be deleted as well). The
weakness of KNN, however, is that it doesn’t handle high
numbers of dimensions well.

DECISION TREE

Based on a tree of decision nodes, the learning approach is to
recursively divide the training data into buckets of homogeneous
members through the most discriminative dividing criteria
possible. The measurement of “homogeneity” is based on
the output label; when it is a numeric value, the measurement
will be the variance of the bucket; when it is a category, the
measurement will be the entropy, or “gini index,” of the bucket.

During the training, various dividing criteria based on the input
will be tried (and used in a greedy manner); when the input is a
category (Mon, Tue, Wed, etc.), it will first be turned into binary
(isMon, isTue, isWed, etc.,) and then it will use true/false as a
decision boundary to evaluate homogeneity; when the input is
a numeric or ordinal value, the lessThan/greaterThan at each
training-data input value will serve as the decision boundary.

The training process stops when there is no significant gain in
homogeneity after further splitting the Tree. The members of
the bucket represented at leaf node will vote for the prediction;
the majority wins when the output is a category. The member’s
average is taken when the output is a numeric.

Here is an example in R:
> library(rpart)
> #Train the decision tree
> treemodel <- rpart(Species~., data=iristrain)
> plot(treemodel)
> text(treemodel, use.n=T)
> #Predict using the decision tree
> prediction <- predict(treemodel, newdata=iristest, type=’class’)
> #Use contingency table to see how accurate it is
> table(prediction, iristest$Species)
prediction setosa versicolor virginica
 setosa 10 0 0
 versicolor 0 10 3
 virginica 0 0 7
> names(nnet_iristrain)[8] <- ‘virginica’

Here is the Tree model that has been learned:

 The good part of the Tree is that it can take different data types
of input and output variables that can be categorical, binary and
numeric values. It can handle missing attributes and outliers
well. Decision Tree is also good in explaining reasoning for its
prediction and therefore gives good insight about the underlying
data.

The limitation of Decision Tree is that each decision boundary
at each split point is a concrete binary decision. Also, the
decision criteria considers only one input attribute at a time, not
a combination of multiple input variables. Another weakness
of Decision Tree is that once learned it cannot be updated
incrementally. When new training data arrives, you have to throw
away the old tree and retrain all data from scratch. In practice,
standalone decision trees are rarely used because their accuracy
ispredictive and relatively low . Tree ensembles (described
below) are the common way to use decision trees.

TREE ENSEMBLES

Instead of picking a single model, Ensemble Method combines
multiple models in a certain way to fit the training data. Here are
the two primary ways: “bagging” and “boosting.” In “bagging”,
we take a subset of training data (pick n random sample out of
N training data, with replacement) to train up each model. After
multiple models are trained, we use a voting scheme to predict
future data.

Random Forest is one of the most popular bagging models; in
addition to selecting n training data out of N at each decision
node of the tree, it randomly selects m input features from the
total M input features (m ~ M^0.5). Then it learns a decision tree
from that. Finally, each tree in the forest votes for the result.

Here is the R code to use Random Forest:
> library(randomForest)
#Train 100 trees, random selected attributes
> model <- randomForest(Species~., data=iristrain, nTree=500)
#Predict using the forest
> prediction <- predict(model, newdata=iristest, type=’class’)
> table(prediction, iristest$Species)
> importance(model)
 MeanDecreaseGini
Sepal.Length 7.807602
Sepal.Width 1.677239
Petal.Length 31.145822
Petal.Width 38.617223

“Boosting” is another approach in Ensemble Method. Instead
of sampling the input features, it samples the training data
records. It puts more emphasis, though, on the training data that
is wrongly predicted in previous iterations. Initially, each training
data is equally weighted. At each iteration, the data that is
wrongly classified will have its weight increased.

Gradient Boosting Method is one of the most popular boosting
methods. It is based on incrementally adding a function that fits
the residuals.

Set i = 0 at the beginning, and repeat until convergence.
•	 Learn a function Fi(X) to predict Y. Basically, find F that

minimizes the expected(L(F(X) – Y)), where L is the lost
function of the residual

•	 Learning another function gi(X) to predict the gradient of
the above function

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

6 Machine Learning

 RECOMMENDED BOOK

•	 Update Fi+1 = Fi + a.gi(X), where a is the learning rate

Below is Gradient-Boosted Tree using the decision tree as the
learning model F. Here is the sample code in R:

> library(gbm)
> iris2 <- iris
> newcol = data.frame(isVersicolor=(iris2$Species==’versicolor’))
> iris2 <- cbind(iris2, newcol)
> iris2[45:55,]
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species isVersicolor
45 5.1 3.8 1.9 0.4 setosa FALSE
46 4.8 3.0 1.4 0.3 setosa FALSE
47 5.1 3.8 1.6 0.2 setosa FALSE
48 4.6 3.2 1.4 0.2 setosa FALSE
49 5.3 3.7 1.5 0.2 setosa FALSE
50 5.0 3.3 1.4 0.2 setosa FALSE
51 7.0 3.2 4.7 1.4 versicolor TRUE
52 6.4 3.2 4.5 1.5 versicolor TRUE
53 6.9 3.1 4.9 1.5 versicolor TRUE
54 5.5 2.3 4.0 1.3 versicolor TRUE
55 6.5 2.8 4.6 1.5 versicolor TRUE
> formula <- isVersicolor ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.
Width
> model <- gbm(formula, data=iris2, n.trees=1000, interaction.depth=2,
distribution=”bernoulli”)
Iter TrainDeviance ValidDeviance StepSize Improve
 1 1.2714 -1.#IND 0.0010 0.0008
 2 1.2705 -1.#IND 0.0010 0.0004
 3 1.2688 -1.#IND 0.0010 0.0007
 4 1.2671 -1.#IND 0.0010 0.0008
 5 1.2655 -1.#IND 0.0010 0.0008
 6 1.2639 -1.#IND 0.0010 0.0007
 7 1.2621 -1.#IND 0.0010 0.0008
 8 1.2614 -1.#IND 0.0010 0.0003
 9 1.2597 -1.#IND 0.0010 0.0008
 10 1.2580 -1.#IND 0.0010 0.0008
 100 1.1295 -1.#IND 0.0010 0.0008
 200 1.0090 -1.#IND 0.0010 0.0005
 300 0.9089 -1.#IND 0.0010 0.0005
 400 0.8241 -1.#IND 0.0010 0.0004
 500 0.7513 -1.#IND 0.0010 0.0004
 600 0.6853 -1.#IND 0.0010 0.0003
 700 0.6266 -1.#IND 0.0010 0.0003
 800 0.5755 -1.#IND 0.0010 0.0002
 900 0.5302 -1.#IND 0.0010 0.0002
 1000 0.4901 -1.#IND 0.0010 0.0002

> prediction <- predict.gbm(model, iris2[45:55,], type=”response”, n.trees=1000)
> round(prediction, 3)
 [1] 0.127 0.131 0.127 0.127 0.127 0.127 0.687 0.688 0.572 0.734 0.722
> summary(model)
 var rel.inf
1 Petal.Length 61.4203761582
2 Petal.Width 34.7557511871
3 Sepal.Width 3.5407662531
4 Sepal.Length 0.2831064016

The GBM R package also gave the relative importance of the
input features, as shown in the bar graph.

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over Free Cheat Sheets
Upcoming Refcardz

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

150

Scala Collections
VisualVM
Opa
Data Warehousing

ABOUT THE AUTHOR

DZone, Inc.
150 Preston Executive Dr.
Suite 200
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2012 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

Ricky has spent the last 20 years developing and
designing large scale software systems including
software gateways, fraud detection, cloud
computing, web analytics, and online advertising.
He has played different roles from architect to
developer and consultant in helping companies

to apply statistics, machine learning, and optimization techniques to
extract useful insight from their raw data, and also predict business
trends. Ricky has 9 patents in the areas of distributed systems, cloud
computing and real-time analytics. He is very passionate about
algorithms and problem solving. He is an active blogger and maintains
a technical blog to share his ideas at http://horicky.blogspot.com

Introduction to Data Mining covers all aspects
of data mining, taking both theoretical and
practical approaches to introduce a complex field
to those learning data mining for the first time.
Copious figures and examples bridge the gap
from abstract to hands-on. The book requires
only basic background in statistics, and requires
no background in databases. Includes detailed

treatment of predictive modeling, association analysis, clustering,
anomaly detection, visualization, and more. http://www-users.cs.umn.
edu/~kumar/dmbook/index.php

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://horicky.blogspot.com
http://www-users.cs.umn.edu/~kumar/dmbook/index.php
http://www-users.cs.umn.edu/~kumar/dmbook/index.php

