
 

 

DZone, Inc.  |   www.dzone.com

By Mike Keith

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 J

PA
 2

.0
 

G
e

t 
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#127

CONTENTS INCLUDE:
n	 Whats New in JPA 2.0
n	 JDBC Properties
n	 Access Mode
n	 Mappings
n	 Shared Cache
n	 Additional API and more...

Getting Started with
 JPA 2.0

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://answerhub.com


  

DZone, Inc.  |   www.dzone.com

G
et

 M
o

re
 R

ef
ca

rd
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#159
A

p
ac

h
e 

H
B

as
e

By Alex Baranau and Otis Gospodnetic

ABOUT HBASE

HBase is the Hadoop database. Think of it as a distributed, scalable Big 
Data store.

Use HBase when you need random, real-time read/write access to your 
Big Data. The goal of the HBase project is to host very large tables — 
billions of rows multiplied by millions of columns — on clusters built with 
commodity hardware. HBase is an open-source, distributed, versioned, 
column-oriented store modeled after Google’s Bigtable. Just as Bigtable 
leverages the distributed data storage provided by the Google File System, 
HBase provides Bigtable-like capabilities on top of Hadoop and HDFS.

CONFIGURATION

OS & Other Pre-requisites
HBase uses the local hostname to self-report its IP address. Both forward- 
and reverse-DNS resolving should work.

HBase uses many files simultaneously. The default maximum number 
of allowed open-file descriptors (1024 on most *nix systems) is often 
insufficient. Increase this setting for any Hbase user.

The nproc setting for a user running HBase also often needs to be 
increased — when under a load, a low nproc setting can result in the 
OutOfMemoryError.

Because HBase depends on Hadoop, it bundles an instance of the 
Hadoop jar under its /lib directory. The bundled jar is ONLY for use in 
standalone mode. In the distributed mode, it is critical that the version 
of Hadoop on your cluster matches what is under HBase. If the versions 
do not match, replace the Hadoop jar in the HBase /lib directory with the 
Hadoop jar from your cluster.

To increase the maximum number of files HDFS DataNode can serve at 
one time in hadoop/conf/hdfs-site.xml, just do this:

<property>
  <name>dfs.datanode.max.xcievers</name>
  <value>4096</value>
</property>

hbase-env.sh
You can set HBase environment variables in this file.

Env Variable Description

HBASE_HEAPSIZE Shows the maximum amount of heap to use, in 
MB. Default is 1000. It is essential to give HBase 
as much memory as you can (avoid swapping!) to 
achieve good performance.

HBASE_OPTS Shows extra Java run-time options. You can also 
add the following to watch for GC:

export HBASE_OPTS="$HBASE_OPTS -verbose:gc 
-XX:+PrintGCDetails -XX:+PrintGCDateStamps 
$HBASE_GC_OPTS"

hbase-site.xml
Specific customizations go into this file in the following file format:

<configuration>
  <property>
    <name>property_name</name>
    <value>property_value</value>
  </property>
  …
</configuration>

For the list of configurable properties, refer to http://hbase.apache.org/
book.html#hbase_default_configurations (or view the raw /conf/hbase-
default.xml source file).

These are the most important properties:

Property Value Description

hbase.cluster.
distributed

true Set value to true when running in 
distributed mode.

hbase.zookeeper.
quorum

my.zk.
server1,my.
zk.server2,

HBase depends on a running 
ZooKeeper cluster. Configure 
using external ZK. (If not 
configured, internal instance of ZK 
is started.)

hbase.rootdir hdfs://my.hdfs.
server/hbase

The directory shared by region 
servers and where HBase 
persists. The URL should be 'fully 
qualified' to include the filesystem 
scheme.

START/STOP

Running Modes             

            

CONTENTS INCLUDE:
n Configuration
n Start/Stop
n HBase Shell
n Java API
n Web UI: Master & Slaves
n and More!

Apache HBase
The NoSQL Database for Hadoop and Big Data

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://hbase.apache.org/book.html#hbase_default_configurations
http://hbase.apache.org/book.html#hbase_default_configurations
http://answerhub.com/


2 Apache HBase

DZone, Inc.  |   www.dzone.com

This is a typical cluster setup. 

Mode Description

Standalone HBase does not use HDFS it uses the local filesystem 
instead and it runs all HBase daemons and a local 
ZooKeeper in the same JVM.

Pseudo-
distributed

A pseudo-distributed mode is simply a distributed mode 
running on a single host. Use this configuration for testing 
and prototyping on HBase.

Fully-
distributed

Daemons are spread across all nodes in the cluster. Use 
this configuration for production or for evaluating HBase 
performance.

Start/Stop Commands

from master on every node CDH (on every node)

bin/start-hbase.
sh

bin/hbase master start
bin/hbase regionserver 
start

service hadoop-hbase-
master start
service hadoop-hbase-
regionserver start

bin/stop-hbase.sh bin/hbase master stop
bin/hbase regionserver 
stop

service hadoop-hbase-
master stop
service hadoop-hbase-
regionserver stop

HBASE SHELL

To run the HBase shell:

$ ./bin/hbase shell

For examples of scripting HBase, look for files with the .rb extension in the 
HBase bin directory. To run one of these scripts, do the following:

$ ./bin/hbase org.jruby.Main PATH_TO_SCRIPT

Shell Command Example Description

help Show shell help

create 'mytable', {NAME => 
'colfam1', VERSIONS => 1, TTL => 
2592000, BLOCKCACHE => true}, 
{NAME => 'colfam2'}

Create a table

list List all tables

disable ‘mytable’
drop ‘mytable’

Drop a table

truncate ‘mytable’ Truncate(clear) a table: disable->drop-
>create

alter 'mytable', {NAME => 'new_
colfam'}, {NAME => 'colfam_to_
delete', METHOD => 'delete'}

Alter a table / add column family 
(Note: table must be disabled to make 
ColumnFamily modifications)

scan ‘mytable’ Scan all table records

scan ‘mytable’, {LIMIT=>10, 
STARTROW=>”start_row”, 
STOPROW=>”stop_row”}

Scan 10 records in a table starting with 
“start_row” and ending with “end_row” 
(use double quotes to escape hex-
based characters)

get ‘mytable’, ‘row_key’ Get a record

put ‘mytable’, ‘row_key’, 
colfam:qual’, ‘value’

Add/update a record

delete 'mytable', 'row_key', 
'colfam:qual'

Delete a record

major_compact 'mytable' Run minor/major compaction

Shell Command Example Description

split  'mytable' Split region(s)

status 'detailed' Get HBase cluster-status details and 
statistics

JAVA API

Schema Creation
HBase schemata can be created or updated using the HBaseAdmin in the 
Java API, as shown below:

Configuration config = HBaseConfiguration.create();  
HBaseAdmin admin = new HBaseAdmin(conf);    
String table = “myTable”;

admin.disableTable(table);           

HColumnDescriptor cf1 = ...;
admin.addColumn(table, cf1);      // adding new ColumnFamily
HColumnDescriptor cf2 = ...;
admin.modifyColumn(table, cf2);    // modifying existing ColumnFamily

admin.enableTable(table);        

HTable
HTable manages connections to the HBase table.

Configuration conf = HBaseConfiguration.create();
HTable table = new HTable(conf, “mytable”);
table.setAutoFlush(false);                 
table.setWriteBufferSize(2 * 1024 * 1024); // 2 Mb
// … do useful stuff
table.close()

Put
“Put” adds new records into the HBase table.

HTable table = ...     // instantiate HTable
Put put = new Put(Bytes.toBytes(“key1”));
put.add(Bytes.toBytes(“colfam”), Bytes.toBytes(“qual”),
        Bytes.toBytes(“my_value”));
put.add(...);
...
table.put(put);

Get	
“Get” fetches a single record given its key.

HTable table = ...     // instantiate HTable
Get get = new Get(rowKey);
get.addColumn(Bytes.toBytes(“colfam”), 
              Bytes.toBytes(“qual”)); // to fetch specific column
get.addFamily(“colfam2”);  // to fetch the all from column 
Result result = aggTable.get(get);

Delete
“Delete” deletes a single record given its key.

HTable table = ...     // instantiate HTable
Delete toDelete = new Delete(rowKey);
table.delete(delete);

Scan
“Scan” searches through multiple rows iteratively for specified attributes.

HTable table = ...      // instantiate HTable
Scan scan = new Scan();
scan.addColumn(Bytes.toBytes(“cf”),Bytes.toBytes(“attr”));
scan.setStartRow( Bytes.toBytes(“row”));  // start key is inclusive
scan.setStopRow( Bytes.toBytes(“row” +  new byte[] {0}));  // stop key is 
exclusive
ResultScanner scanner = table.getScanner(scan)
try {
  for(Result result : scanner) {
    // process Result instance
  }
} finally {
  scanner.close();
}

Hot
Tip

To manage all nodes from master, set up passwordless ssh.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com


3 Apache HBase

DZone, Inc.  |   www.dzone.com

WEB UI: MASTER & SLAVES

HMaster and RegionServer web interfaces are handy for checking high-
level cluster states as well as individual tables/regions and slaves details. 
See the Operational Management section for how to access more statistics 
and metrics exposed by HBase.

Port Web-Interface Contains

60010 HMaster web-interface 
default port

cluster status and statistics

table’s statistics, regions, information 
and location

different tools to invoke compactions 
and splits on regions and whole tables

various links to RegionServer’s web-
interface

60030 RegionServer web-
interface default port

RegionServer statistics, assigned 
regions info, and access to logs

DATA MODEL & SCHEMA DESIGN

Data Model

Table
Applications store data into an HBase table. Tables are made of rows and 
columns. Table cells — the intersection of row and column coordinates — 
are versioned.      

Cell Value
A {row, column, version} tuple precisely specifies a cell in HBase. 

Versions
It is possible to have an unbounded number of cells where the row 
and column are the same but the cell address differs only in its version 
dimension. A version is specified as a long integer. The HBase version 
dimension is stored in decreasing order so when reading from a store file, 
the most recent values are found first.

Row Key
Table row keys are also byte arrays. Therefore almost anything can serve 
as a row key, from strings to binary representations of longs or even 
serialized data structures. 

Rows are lexicographically sorted with the lowest order appearing first 
in a table. The empty byte array is used to denote both the start and end 
of a table’s namespace. All table accesses are via the table row key — its 
primary key. 

Columns & Column Families
Columns in HBase are grouped into column families. All column members 
of a column family have the same prefix. For example, the courses:history 
and courses:math columns are both members of the courses column 
family. Physically, all column family members are stored together in the 
filesystem. Because tuning and storage specifications are done at the 
column family level, it is recommended that all column family members 
have the same general access pattern and size characteristics.

Schema Creation & Updating
Tables are declared up front at schema-definition time using the HBase 
shell or Java API (see earlier sections). Column families are defined at 
table-creation time. It is possible to alter a table and add new column 
families, but the table must be disabled at altering time.

When changes are made to either tables or column families (e.g., region 
size, block size), these changes take effect the next time there is a major 
compaction and the StoreFiles get re-written.

Row-Key Design
Try to keep row keys short because they are stored with each cell in an 
HBase table, thus noticeably reducing row-key size results of data needed 
for storing HBase data. This advice also applies to column family names.
Common problems of choosing between sequential row keys and randomly 
distributed row keys:

Some mixed-design approaches  allow fast range scans while distributing 
data among all clusters when writing sequential (by nature) data. One of 
the ready-to-use solutions is here: https://github.com/sematext/HBaseWD.

Design Solution Pros Cons

Using sequential row 
keys (e.g. time-series 
data with row key built 
based on timestamp)

Makes it possible to 
perform fast range 
scans with help of 
setting start/stop keys 
on Scanner

Creates single 
regionserver, hot-
spotting problems 
upon writing data 
(as row keys go in 
sequence, all records 
end up written into a 
single region at a time)

Using randomly 
distributed row keys 
(e.g. UUIDs)

Aims for fastest 
writing performance 
by distributing new 
records over random 
regions

Does not conduct 
fastrange scans 
against written data

And here is the link to access the HBase Reference Guide: http://hbase.
apache.org/book.html#rowkey.designRow-key design is essential 
to gaining maximum performance when using HBase to store your 
application’s data.

Column Families
Currently, HBase does not do well with anything above two or three column 
families per table. With that said, keep the number of column families in 
your schema low. Try to make do with one column family in your schemata 
if you can. Only introduce a second and third column family in the case 
where data access is usually column-scoped; i.e. you usually query no 
more than a single column family at one time.

You can also set TTL (in seconds) for a column family. HBase will 
automatically delete rows once reaching the expiration time.

Versions
The maximum number of row versions that can be stored is configured per 
column family (the default is 3). This is an important parameter because 
HBase does not overwrite row values, but rather stores different values per 
row by time (and qualifier). Setting the number of maximum versions to an 
exceedingly high level (e.g., hundreds or more) is not a good idea because 
that will greatly increase StoreFile size. 

The minimum number of row versions to keep can also be configured 
per column family (the default is 0, meaning the feature is disabled). 
This parameter is used together with TTL and maximum row versions 
parameters to allow configurations such as “keep the last T minutes worth 
of data of at least M versions, and at most N versions.” This parameter 
should only be set when TTL is enabled for a column family and must be 
less than the number of row versions.

Data Types
HBase supports a “bytes-in/bytes-out” interface via Put and Result, so 
anything that can be converted to an array of bytes can be stored as a 
value. Input can be strings, numbers, complex objects, or even images, as 
long as they can be rendered as bytes. 

One supported data type that deserves special mention is the “counters” 
type. This type enables atomic increments of numbers.

MAPREDUCE

Reading from HBase 

Job Configuration
The following is an example of using HBase as a MapReduce source in a 
read-only manner:

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
https://github.com/sematext/HBaseWD
http://hbase.apache.org/book.html#rowkey.designRow-key
http://hbase.apache.org/book.html#rowkey.designRow-key


4 Apache HBase

DZone, Inc.  |   www.dzone.com

Configuration config = HBaseConfiguration.create();

config.set(                                 // speculative 
  “mapred.map.tasks.speculative.execution”, // execution will
  “false”);                                 // decrease performance
                                            // or damage the data

Job job = new Job(config, “ExampleRead”);
job.setJarByClass(MyReadJob.class);   // class that contains mapper

Scan scan = new Scan();
scan.setCaching(500);        // 1 is the default in Scan,
                             // which will be bad for MapReduce jobs

scan.setCacheBlocks(false);  // don’t set to true for MR jobs

// set other scan attrs

...

TableMapReduceUtil.initTableMapperJob(
  tableName,        // input HBase table name
  scan,             // Scan instance to control CF and attribute selection
  MyMapper.class,   // mapper
  null,             // mapper output key 
  null,             // mapper output value
  job);

job.setOutputFormatClass(NullOutputFormat.class); // because we
                           // aren’t emitting anything from mapper

boolean b = job.waitForCompletion(true);

if (!b) {
  throw new IOException(“error with job!”);
}

The mapper instance would extend TableMapper, too, like this:
public static class MyMapper extends TableMapper<Text, Text> {
  public void map(ImmutableBytesWritable row, Result value, Context context) 
throws InterruptedException, IOException {

    // process data for the row from the Result instance.

   }
}       

Map Tasks Number
When TableInputFormat is used (set by default with TableMapReduceUtil.
initTableMapperJob(...)) to read an HBase table for input to a MapReduce 
job, its splitter will make a map task for each region of the table. Thus, 
if 100 regions are in the table, there will be 100 map tasks for the job, 
regardless of how many column families are selected in the Scan.
To implement a different behavior (custom splitters), see the method 
getSplits in TableInputFormatBase (either override in custom-splitter class 
or use as example).

Writing to HBase

Job Configuration
The following is an example of using HBase both as a source and as a sink 
with MapReduce:

Configuration config = ...; // configuring reading

Job job = ...;              // from HBase table

Scan scan = ...;            // is the same as in

TableMapReduceUtil          // read-only example

.initTableMapperJob(...); // above

TableMapReduceUtil.initTableReducerJob(
    targetTable,             // output table
    MyTableReducer.class,    // reducer class
    job);

job.setNumReduceTasks(1);   // at least one, adjust as required
            
boolean b = job.waitForCompletion(true);

And the reducer instance would extend TableReducer, as shown here:

public static class MyTableReducer extends TableReducer<Text, IntWritable, 
ImmutableBytesWritable>  {
  public void reduce(Text key, Iterable<IntWritable> values, Context context) 
throws IOException, InterruptedException {
    ...
    Put put = ...;    // data to be written
    context.write(null, put);
    ...
  }
}

PERFORMANCE TUNING

Details about performance tuning could take up this whole Refcard, 
and even more, so this section contains the most common pointers (in 
addition to what’s mentioned in other sections). Please refer to the HBase 
documentation (e.g. Apache HBase Reference) for more details.

OS
•	 Give HBase as much RAM as you can (hbase-env.sh).
•	 Use a 64-bit platform.
•	 Don’t allow swapping. 

Java
•	 Watch for Garbage Collector behavior (avoid long stop-the-world 

pauses).
•	 Use proven-to-work-well java versions. 

HBase Configuration

Setting Comments

hbase.regionserver.handler.
count property in hbase-site.xml

Number of threads that are kept open 
to answer incoming requests to user 
tables. The rule of thumb is to keep this 
number low (10 by default) when the 
payload per request approaches the MB 
(big puts, scans using a large cache), 
and high when the payload is small 
(gets, small puts, ICVs, deletes).

hbase.hregion.max.filesize in 
hbase-site.xml

Consider going to larger regions to cut 
down on the total number of regions 
on your cluster. Generally, less Regions 
to manage makes for a smoother 
running cluster. A lower number of 
regions is preferred, i.e. a number in 
the range from 20 to the low-hundreds 
per RegionServer. The default 256Mb is 
usually too low.

compression Consider enabling ColumnFamily 
compression (on CF creation). Several 
options are near-frictionless, and in 
most cases they boost performance 
by reducing the size of StoreFiles, thus 
reducing I/O as well.

splitting One may desire to turn off automatic 
splitting, e.g., for better debugging 
purposes. To do so, increase:hbase.
hregion.max.filesize (e.g. 100GB).

major compactions A common administrative technique 
is to manage major compactions 
manually rather than letting HBase 
do it. By default, HConstants.MAJOR_
COMPACTION_PERIOD is one day long. 
Major compactions may kick in when 
you least desire it - especially on a busy 
system. To turn off automatic major 
compactions, set the hbase.hregion.
majorcompaction property (hbase-site.
xml) value to 0.

Schema Design�
•	 Consider using Bloom Filters. 
•	 Consider increasing column family blocksize (default is 64KB) when 

cell values are large to reduce StoreFile indexes. 
•	 Consider defining in-memory column families. 
•	 Use column family compression. 

Writing to HBase
•	 For batch loading use the bulk-load tool, if possible. For more about 

this technique, go here: http://hbase.apache.org/book/arch.bulk.
load.html

•	 Use pre-splitting of regions when bulk loading into empty HBase 
table (http://hbase.apache.org/book/perf.writing.html).

•	 Consider disabling WAL or use deferred WAL flushes. 

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://hbase.apache.org/book/arch.bulk.load.html
http://hbase.apache.org/book/arch.bulk.load.html
http://hbase.apache.org/book/perf.writing.html


5 Apache HBase

DZone, Inc.  |   www.dzone.com

•	 Make sure that setAutoFlush is set to false on your HTable instance 
when performing a lot of Puts. 

•	 Watch for and avoid the RegionServer hot-spotting problem. 
The sign is that one RS is sweating while others are resting, i.e. 
an uneven load distribution while writing (hot-spotting is also 
mentioned in the Row-Key Design section).  

Reading from HBase
•	 Use bigger-than-default (1) scan caching when reading a lot 

of records, e.g., when using the HBase table as a source for a 
MapReduce job. But beware that overly aggressive caching may 
cause timeouts—e.g., the UnknownScannerException—if processing 
of records is heavy/slow 

•	 Narrow down Scan selection by defining column families and 
columns you need to fetch. 

•	 Close ResultScanners in code. 
•	 Set CacheBlocks to “false” in Scan, a source for the MapReduce job. 

OPERATIONAL MANAGEMENT

Health Check

hbck
Use hbck to check the consistency of your cluster:

$ ./bin/hbase hbck

Metrics
Use metrics exposed by Hadoop and HBase to monitor the state of your 
cluster. As most processes are Java processes, general JVM monitoring is 
useful.

You can use JConsole or any other JMX client to access metrics exposed 
by HBase. Some metrics are also exposed via HMaster and RegionServer 
web interfaces.

SPM for HBase (http://sematext.com/spm/hbase-performance-
monitoring/index.html) monitors all key HBase metrics, renders time-series 
performance graphs, includes alerts, etc.

The most important metrics to monitor are:

Group Metric

HBase Requests count

HBase Compactions queue

Java GC metrics

OS IO Wait

OS User CPU

Backup Options

Type Method

Full Shutdown Use HDFS distcp tool. Stop HBase distcp HBase dir in 
HDFS Start HBase pointing to copied dir.

Live Set up replication between two running clusters.

Live Use CopyTable utility to copy data from one table to 
another on the same cluster, or to copy data to another 
table on another cluster.

Live Use Export tool (run as MapReduce job) to export 
HBase table contents to HDFS. Then use Import tool to 
load data into another table from the dump.

See this link—http://hbase.apache.org/book/ops.backup.html—for more 
about HBase backup methods.

TROUBLESHOOTING & DEBUGGING

Use the info in the Operational Management section for preemptive cluster 
health checks.

When bad things happen, refer to logs (usually start with HMaster logs) 
and/or collected metrics. This is where access to historical stats is 
very useful (see SPM for HBase - http://sematext.com/spm/hbase-
performance-monitoring/index.html)

Logs

Process Log Location

NameNode $HADOOP_HOME/logs/hadoop-<user>-namenode-
<hostname>.log

DataNode $HADOOP_HOME/logs/hadoop-<user>-datanode-
<hostname>.log

JobTracker $HADOOP_HOME/logs/hadoop-<user>-jobtracker-
<hostname>.log

TaskTracker $HADOOP_HOME/logs/hadoop-<user>-jobtracker-
<hostname>.log

HMaster $HBASE_HOME/logs/hbase-<user>-master-<hostname>.
log

RegionServer $HBASE_HOME/logs/hbase-<user>-regionserver-
<hostname>.log

ZooKeeper /var/log/zookeeper/zookeeper.log

To output GC logs (important for debugging RegionServer failures), 
uncomment (or add) the following line in the hbase-env.sh file:

export HBASE_OPTS=”$HBASE_OPTS -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCDateStamps -Xloggc:$HBASE_
HOME/logs/gc-hbase.log”

Resources
http://search-hadoop.com/
search-hadoop.com indexes all mailing lists, wikis, JIRA issues, sources, 
code, javadocs, etc. Search here first when you have an issue. More than 
likely someone has already had your problem.

Mailing Lists
Ask a question on the HBase mailing lists. The ‘dev’ mailing list is aimed 
at the community of developers actually building HBase, and it is also for 
features currently under development.  The ‘user’ list is generally used for 
questions about released versions of HBase. Before going to the mailing 
list, first make sure your question has not already been answered by 
searching the mailing list archives.

IRC
#hbase on irc.freenode.net

JIRA
JIRA is also really helpful when looking for Hadoop/HBase-specific issues 
at https://issues.apache.org/jira/browse/HBASE.

NON-JAVA APIS

Languages talking to JVM
The HBase wiki (see links in the end) contains examples of how to access 
HBase using the following languages:

•	 Jython
•	 Groovy
•	 Scala

Languages with a custom protocol
HBase can also be accessed using the following protocols:

•	 REST
•	 Thrift

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://sematext.com/spm/hbase-performance-monitoring/index.html
http://sematext.com/spm/hbase-performance-monitoring/index.html
http://hbase.apache.org/book/ops.backup.html
http://sematext.com/spm/hbase-performance-monitoring/index.html
http://sematext.com/spm/hbase-performance-monitoring/index.html
http://search-hadoop.com/
https://issues.apache.org/jira/browse/HBASE


Browse our collection of over 150 Free Cheat Sheets
Upcoming Refcardz

Free PDF

6 Apache HBase

 

DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome

refcardz@dzone.com 

Sponsorship Opportunities 

sales@dzone.com 

Copyright © 2012 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval 
system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior 
written permission of the publisher. 

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to 
more than 3.3 million software developers, architects and decision 
makers. DZone offers something for everyone, including news, 
tutorials, cheat sheets, blogs, feature articles, source code and more. 
“"DZone is a developer's dream",” says PC Magazine.

R E C O M M E N D E D  B O O K

USEFUL LINKS & OTHER SOURCES

HBase project: http://hbase.apache.org

HBase Wiki: http://wiki.apache.org/hadoop/Hbase

Apache HBase Reference Guide: http://hbase.apache.org/book.html

Search for Hadoop Ecosystem projects (wiki, mailing lists, source code and 
more): http://search-hadoop.com

Monitoring for HBase: http://sematext.com/spm/hbase-performance-
monitoring

Otis Gospodnetić (@otisg) is a coauthor of 
Lucene in Action (1st and
2nd edition).  He has been involved with 
Lucene since 2000 and Solr since
2006.  He is also a member of Nutch, and 
Mahout development teams, as well
as Lucene Project Management Committee. 
Otis is an Apache Software Foundation

member and the founder of Sematext, a products and services 
company focused on Search & Big Data Analytics using Solr, 
ElasticSearch, Lucene, Hadoop, HBase, Flume, Mahout, and other 
open-source technologies to serve customers world-wide.

Alex Baranau (@abaranau) is a Software 
Engineer at Sematext. For the last few years 
Alex has been working on complex
data analytics-focused projects that utilize 
Hadoop, HBase, and Flume. During
that time Alex contributed to HBase and 
Flume, and has created several
open-sourced projects: HBaseWD and 

HBaseHUT. He writes articles covering Hadoop, HBase, and related 
technologies at Sematext Blog.

HBase: The Definitive Guide
If you’re looking for a scalable storage solution to 
accommodate a virtually endless amount of data, this 
book shows you how Apache HBase can fulfill your 
needs. As the open source implementation of Google’s 
BigTable architecture, HBase scales to billions of rows 
and millions of columns, while ensuring that write and 
read performance remain constant. Many IT executives 
are asking pointed questions about HBase. This book 

provides meaningful answers, whether you’re evaluating this non-relational 
database or planning to put it into practice right away. http://shop.oreilly.
com/

A B O U T  T H E  A U T H O R S

Scala Collections
Object-Oriented PHP
Android
Data Warehousing

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://hbase.apache.org
http://wiki.apache.org/hadoop/Hbase
http://hbase.apache.org/book.html
http://search-hadoop.com
http://sematext.com/spm/hbase-performance-monitoring
http://sematext.com/spm/hbase-performance-monitoring
http://twitter.com/otisg
http://www.sematext.com/
http://twitter.com/abaranau
http://www.sematext.com/
http://github.com/sematext/HBaseWD
http://github.com/sematext/HBaseHUT
http://blog.sematext.com
http://shop.oreilly.com/product/0636920014348.do?sortby=bestSellers
http://shop.oreilly.com/product/0636920014348.do?sortby=bestSellers
http://shop.oreilly.com/product/0636920014348.do?sortby=bestSellers

