

DZone, Inc. | www.dzone.com

By Mike Keith

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 J

PA
 2

.0

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#127

CONTENTS INCLUDE:
n	 Whats New in JPA 2.0
n	 JDBC Properties
n	 Access Mode
n	 Mappings
n	 Shared Cache
n	 Additional API and more...

Getting Started with
 JPA 2.0

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://answerhub.com

DZone, Inc. | www.dzone.com

G
et

 M
o

re
 R

ef
ca

rd
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#162
J

av
a

P
ro

fi
li

n
g

 w
it

h
 V

is
u

al
V

M

By Mick Knutson

ABOUT VISUALVM

VisualVM is a visual tool integrating several command-line JDK tools
and lightweight profiling capabilities. Designed for both production and
development time use, it further enhances the capability of monitoring and
performance analysis for the Java SE platform. http://visualvm.java.net/

CONFIGURATION

Repositories
Windows 7: C:\Users\[userId]\AppData\Roaming\.visualvm\[version]\
repository\
oS X: /Users/[userId]/Library/Application Support/visualvm/[version]/
repository/

User Directory
Windows 7: C:\Users\[userId]\AppData\Roaming\.visualvm\[version]\
oS X: /Users/[userId]/Library/Application Support/visualvm/[version]/

Message logs
Windows 7: C:\Users\[userId]\AppData\Roaming\.visualvm\[version]\var\
log\message.log
oS X: /Users/[userId]/Library/Application Support/visualvm/[version]/var/
log/message.log

JMX

JMX connections
Default connection:

<hostname>:<port>

Detailed connection:

service:jmx:<protocol>:<sap>

Detailed connection example:

service:jmx:rmi://<hostname>:<port>/jndi/rmi://<hostname>:<port>/jmxrmi

Container specific configuration
Configuration for exposing JMX.

Glassfish administration:

JVM options can be set via Glassfish web administration page:
http://localhost:4848/common/javaConfig/serverJvmOptions.
jsf?configName=server-config

Glassfish configuration file:

%GLASSFISH_HOME%\glassfish\domains\[domain]\config\domain.xml
configuration file:

<configs> <config name=”server-config”>
 ... <java-config ...> ...
 <jvm-options><JMX configuration parameters></jvm-options>
 ...

Tomcat:

export CATALINA_OPTS=”<JMX configuration parameters>”

Jetty standalone:

java “<JMX configuration parameters>” -jar start.jar etc/jetty-jmx.xml

Maven:

export MAVEN_OPTS=”<JMX configuration parameters>”

Container specific configuration parameters

Name Parameter

Access file -Dcom.sun.management.jmxremote.access.file=<access
file>

Authenticate -Dcom.sun.management.jmxremote.authenticate=<true
/ false>

Debug -Djavax.net.debug=<level>

JMX port -Dcom.sun.management.jmxremote.port=<PortNumber>

JMX remote
enabled

-Dcom.sun.management.jmxremote

* Keystore file -Djavax.net.ssl.keyStore=<keystore file>

* Keystore
password

-Djavax.net.ssl.keyStorePassword=<password>

Management
level

-Djavax.management.level=<level>

Password file -Dcom.sun.management.jmxremote.password
file=<password file>

RMI server
hostname

-Djava.rmi.server.hostname=<public.ip.address>

SSL enabled -Dcom.sun.management.jmxremote.ssl=<true / false>

CONTENTS INCLUDE:
n	Configuration
n	JMX
n	Available Plugins
n	Java Memory Types
n	JVM Settings
n	and More!

Java Profiling with VisualVM
X-Ray Vision for Dramatic Performance Gains

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://visualvm.java.net/
http://answerhub.com
http://answerhub.com

2 Java Profiling with VisualVM

DZone, Inc. | www.dzone.com

Name Parameter

* Truststore
file

-Djavax.net.ssl.trustStore=<truststore file>

* Truststore
password

-Djavax.net.ssl.trustStorePassword=<password>

* Located in VisualVM options inside the security plugin.

AVAILABLE PLUGINS

Stable Plugins

Name Description

MBean Browser MBeans Browser plugin provides in general the
same functionality as MBeans Browser in JConsole
JDK tool: shows MBeans of an application, displays
values, operations and notifications. In VisualVM,
the browser will be further improved to deliver
better usability and support for the latest JMX
features.

Visual GC Plugin Visual GC attaches to an application and collects
and graphically displays garbage collection, class
loader, and HotSpot compiler performance data.

Tracer Framework and GUI for detailed monitoring and
analyzing Java applications. Using various types
of probes, the Tracer gathers metrics from an
application and displays the data in a timeline. The
data are displayed both graphically and in a table
and can be exported to common formats for further
processing in external tools.

Thread Inspector Enables analyzing stack trace(s) of one or more
selected threads directly without requiring you to
take and open full thread dumps. This is extremely
useful for quick and easy analyzing of various
threading problems.

BTrace BTrace is a dynamic tracing tool for Java. With
this plugin you can create, deploy and save BTrace
tracing scripts directly from the VisualVM.

VisualVM Extensions The intent of this module is to add support for
additional functionality (such as new JDKs, JVMs,
HotSpot versions, etc.) not supported by the
VisualVM core modules at the time VisualVM was
released. It's always a good idea to get this plugin
for a fresh VisualVM installation.

Security The GUI for setting the keystore, truststore,
protocols and ciphers for SSL/TLS connections in
VisualVM. Using the plugin is equivalent to setting
appropriate system properties javax.net.ssl.* and
javax.rmi.ssl.client.*

Buffer Monitor Monitors usage of direct buffers created by
ByteBuffer.allocateDirect and mapped buffers
created by FileChannel.map. Note that the buffers
monitoring requires the monitored application to
run JDK 7 starting from Build 36.

Kill Applications Kills monitored applications that became
unresponsive.

System Tray Minimize/restore running the VisualVM instance
into/from system tray. Not supported on Mac OS X
(does nothing).

JVM Capabilities Displays capabilities of monitored application's
JVM.

Java ME Profiler
Snapshot Viewer

Opens Java ME SDK profiler file in VisualVM.

JConsole plugins
container

Provides support for using existing JConsole
plugins inside VisualVM.

Tracer probes

Name Description

Monitor Probes For monitoring CPU & GC activity, heap & permgen
usage, number of loaded classes and application
threads.

Name Description

JVM Probes For monitoring various virtual machine internals, such
as I/O metrics, GC metrics and HotSpot utilization.

Jvmstat Probes For visualizing the metrics exported by the monitored
JVM as jvmstat counters (including sun.gc.jvmstat,
sun.perfdata.jvmstat, sun.threads.jvmstat, etc.).

Swing Probes Provide detailed information about AWT and Swing GUI
performance in terms of paints count, layout times and
events utilization.

JavaFX Probes For monitoring the performance of various logical parts
of JavaFX applications.

DTrace Probes Provides low-level system metrics, including JVM
overhead, utilization of each CPU or syscalls numbers.
These probes are available only for the Solaris/
OpenSolaris OS.

JConsole Plugins

Name Description

JTop A plugin for monitoring per-thread CPU usage and state.

Top Threads Plugin for monitoring per-thread CPU usage and state.
http://lsd.luminis.nl/top-threads-plugin-for-jconsole/

Hibernate Monitors Hibernate via its JMX exports. The plugin
displays graphs and details on queries, entities,
collections and cache efficiency. http://hibernate-jcons.
sourceforge.net/

Plugins in development

Name Description

Glassfish Provides additional information for GlassFish servers, e.g.,
thenumber of active sessions, processed transactions etc.
It's also able to monitor each deployed web application
separately.

OQL Syntax
Support

Enhanced editor for OQL Console in HeapWalker providing
syntax coloring and basic code completion.

Third-Party Plugins

Name Description

Thread Dump Analyzer
(TDA)

The Thread Dump Analyzer (TDA) for Java is
a small GUI for analyzing Thread Dumps and
Heap Information generated by the Sun Java
VM. It provides statistics about thread dumps,
gives information about locked monitors,
waiting threads and much more. http://java.net/
projects/tda

OSGI Enables basic management of OSGi platforms
via JMX. For detailed description and installation
instructions visit the plugin page.

GCViewer A new garbage collection monitoring plugin for
VisualVM allows for investigating crucial GC
metrics in greater detail and higher resolution.
This is recommended especially for monitoring
latency-constrained Java applications.

JAVA MEMORY TYPES

When a Java application is started, the Java process pre-allocates a given
block of memory from the underlying operating system that is dedicated
to the Java process. Addressable Java memory consists of a heap,
permanent generation, and other memory spaces. The other memory
space includes variables for JNI, Stack space, and the running Java Virtual
Machine (JVM). A Java application can store variables in either the stack
or heap spaces, depending upon the type and scope of the variable being
stored.

Hot
Tip

GCViewer only works with OpenJDK and Hotspot by exploiting
JVMStat API to access built-in HotSpot counters. For some
reason the new parallel GC (-XX:+UseParNewGC) does not
expose all the counters as the parallel scavenging collector does
(-XX:+UseParallelGC), so only the former GC Pauses and Promoted
vs Survived charts will work.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://answerhub.com

3 Java Profiling with VisualVM

DZone, Inc. | www.dzone.com

Java stack
The Java stack space consists of local variables, method calls, arguments,
reference variables, intermediate computations, and return values, if any,
corresponding to the method invoked. Primitive data type variables such as
int, long, float and double are also stored in the stack space.

Every thread, including the main thread and daemon threads, gets its own
stack space but will share the same heap space.

The memory-for-stack space does not need to be contiguous and follows a
Last In, First out (LIFO) algorithm.

Java permanent generation
The Java permanent generation space, or permGen, consists of reflective
data of the virtual machine such as Class and Method objects. When new
Class or Method types are created at runtime, new space is allocated in the
permGen space for these types.

Java heap
The Java heap spaces consist of instances of Objects, instance variables,
and instance-level references to Objects.

There are three types of heaps:

•	 Eden	Space	(young	generation):	pool	from	which	memory	is	initially	
allocated	for	most	objects.

•	 Survivor	Spaces	(young	generation):	two	pools	containing	objects	
that	have	survived	GC	of	Eden	space.

•	 Tenured	Generation	(old	generation):	pool	containing	objects	that	
have	existed	for	some	time	in	the	survivor	spaces.

JVM SETTINGS

Java JVM settings and details for tuning, tracing and debugging a Java
Virtual Machine (JVM)

Categories of Java HotSpot VM Options
Standard options recognized by the Java HotSpot VM are described on the
Java Application Launcher reference pages for Windows, Solaris and Linux.

•	 Options	that	begin	with	-X	are	non-standard	(not	guaranteed	to	be	
supported	on	all	VM	implementations),	and	are	subject	to	change	
without	notice	in	subsequent	releases	of	the	JDK.

•	 Options	that	are	specified	with	-XX	are	unstable	and	are	subject	to	
change	without	notice.

Useful –XX Options
Some options may vary per architecture/OS/JVM version. Platforms with a
differing default value are listed in the description.

•	 Boolean	options	are	turned	on	with	-XX:+<option>	and	turned	off	
with	-XX:-<option>.

•	 Numeric	options	are	set	with	-XX:<option>=<number>.	Numbers	can	
include	‘m’	or	‘M’	for	megabytes,	‘k’	or	‘K’	for	kilobytes,	and	‘g’	or	‘G’	
for	gigabytes	(for	example,	32k	is	the	same	as	32768).

•	 String	options	are	set	with	-XX:<option>=<string>,	and	are	usually	
used	to	specify	a	file,	a	path,	or	a	list	of	commands.

Flags marked as manageable are dynamically writeable through the JDK
management interface (com.sun.management.HotSpotDiagnosticMXBean
API) and also through VisualVM.

The options below are loosely grouped into categories.

•	 Java	heap	options	are	used	to	specify	initial	and	max	heap	size	and	
thread	stack	size	while	running	Java	programs.

•	 Behavioral	options	change	the	basic	behavior	of	the	VM.

•	 Garbage	First	(G1)	Garbage	Collection	Options

•	 Performance	tuning	options	are	knobs	that	can	be	used	to	tune	VM	
performance.

•	 Debugging	options	generally	enable	tracing,	printing,	or	output	of	
VM	information.

Java heap options

Option & default value Description

-Xms<n[k|m]> set initial Java heap size

-Xmx<n[k|m]> set maximum Java heap size

-Xss<n[k|m]> set java thread stack size

Behavioral Options

Option & default value Description

[The (original) copying collector
(Enabled by default)]

When this collector kicks in, all
application threads are stopped, and
the copying collection precedes using
one thread (which means only one CPU,
even if on a multi-CPU machine). This
is known as a stop-the-world collection
because,basically, the JVM pauses
everything else until the collection is
completed.

-XX:-AllowUserSignalHandlers Do not complain if the application
installs signal handlers. (Relevant to
Solaris and Linux only.)

-XX:AltStackSize=<n[k|m]>

[default = 16384]

Alternate signal stack size (in Kbytes).
(Relevant to Solaris only, removed from
5.0.)

-XX:-DisableExplicitGC Disable calls to System.gc(), JVM still
performs garbage collection when
necessary.

-XX:+FailOverToOldVerifier Fail over to old verifier when the new
type checker fails. (Introduced in 6.)

-XX:+HandlePromotionFailure The youngest generation collection
does not require a guarantee of full
promotion of all live objects. (Introduced
in 1.4.2 update 11) [5.0 and earlier:
false.]

-XX:+MaxFDLimit Bump the number of file descriptors to
max. (Relevant to Solaris only.)

-XX:PreBlockSpin=<n>

[default = 10]

Spin count variable for use with
-XX:+UseSpinning. Controls the
maximum spin iterations allowed before
entering operating system thread
synchronization code. (Introduced in
1.4.2.)

-XX:-RelaxAccessControlCheck Relax the access control checks in the
verifier. (Introduced in 6.)

-XX:+ScavengeBeforeFullGC Do young generation GC prior to a full
GC. (Introduced in 1.4.1.)

-XX:+UseAltSigs Use alternate signals instead of
SIGUSR1 and SIGUSR2 for VM internal
signals. (Introduced in 1.3.1 update 9,
1.4.1. Relevant to Solaris only.)

-XX:+UseBoundThreads Bind user level threads to kernel
threads. (Relevant to Solaris only.)

-XX:-UseConcMarkSweepGC Use concurrent mark-sweep collection
for the old generation. (Introduced in
1.4.1)

-XX:+UseGCOverheadLimit Use a policy that limits the proportion
of the VM's time that is spent in GC
before an OutOfMemory error is thrown.
(Introduced in 6.)

-XX:+UseLWPSynchronization Use LWP-based instead of thread based
synchronization. (Introduced in 1.4.0.
Relevant to Solaris only.)

-XX:-UseParallelGC Use parallel garbage collection for
scavenges. (Introduced in 1.4.1)

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://answerhub.com

4 Java Profiling with VisualVM

DZone, Inc. | www.dzone.com

Option & default value Description

-XX:-UseParallelOldGC Use parallel garbage collection for the
full collections. Enabling this option
automatically sets -XX:+UseParallelGC.
(Introduced in 5.0 update 6.)

-XX:-UseSerialGC Use serial garbage collection.
(Introduced in 5.0.)

-XX:-UseSpinning Enable naive spinning on Java monitor
before entering operating system thread
synchronization code. (Relevant to 1.4.2
and 5.0 only.) [1.4.2, multi-processor
Windows platforms: true]

-XX:+UseTLAB Use thread-local object allocation
(Introduced in 1.4.0, known as UseTLE
prior to that.) [1.4.2 and earlier, x86 or
with -client: false]

-XX:+UseSplitVerifier Use the new type checker with
StackMapTable attributes. (Introduced
in 5.0.)[5.0: false]

-XX:+UseThreadPriorities Use native thread priorities.

-XX:+UseVMInterruptibleIO Thread interrupt before or with EINTR
for I/O operations results in OS_INTRPT.
(Introduced in 6. Relevant to Solaris
only.)

-XX:-UseParNewGC The parallel copying collector, like the
original copying collector, this is a stop-
the-world collector.

-Xincgc The incremental collector uses a "train"
algorithm to collect small portions of
the old generation at a time.

Garbage First (G1) Garbage Collection Options

Option & default value Description

-XX:+UseG1GC Use the Garbage First (G1) Collector

-XX:MaxGCPauseMillis=<n> Sets a target for the maximum GC
pause time. This is a soft goal, and
the JVM will make its best effort to
achieve it.

-XX:InitiatingHeapOccupancyPerc
ent=<n>
[default = 45]

[A value of 0 denotes 'do constant
GC cycles'.]

Percentage of the (entire) heap
occupancy to start a concurrent GC
cycle. It is used by GCs that trigger
a concurrent GC cycle based on the
occupancy of the entire heap, not
just one of the generations (e.g., G1).

-XX:NewRatio=<n>

[default = 2]

Ratio of new/old generation sizes.

-XX:SurvivorRatio=<n>

[default = 8]

Ratio of eden/survivor space size.

-XX:MaxTenuringThreshold=<n>

[default = 15]

Maximum value for tenuring
threshold.

-XX:ParallelGCThreads=<n>

[The default value varies with the
platform on which the JVM is
running.]

Sets the number of threads used
during parallel phases of the garbage
collectors.

-XX:ConcGCThreads=<n> Number of threads concurrent
garbage collectors will use. The
default value varies with the platform
on which the JVM is running.

-XX:G1ReservePercent=<n>

[default = 10]

Sets the amount of heap that is
reserved as a false ceiling to reduce
the possibility of promotion failure.

Option & default value Description

-XX:G1HeapRegionSize=<n[k|m]>

[min = 1mb, max = 32mb]
[The default value of this parameter
is determined ergonomically based
upon heap size.]

With G1 the Java heap is subdivided
into uniformly sized regions. This
sets the size of the individual sub-
divisions.

-XX:+AggressiveHeap Aggressively tune the parameters of
its tuning algorithm based on using
all the resources of the operating
system on which the JVM is running.

Performance Options

Option & default value Description

-XX:+AggressiveOpts Turn on point performance compiler
optimizations that are expected to
be default in upcoming releases.
(Introduced in 5.0 update 6.)

-XX:CompileThreshold=<n>

[default = 10000]
[-client: 1,500]

Number of method invocations/
branches before compiling.

-XX:LargePageSizeInBytes=<n[k
|m]>

[default = 4m]
[amd64: 2m.]

Sets the large page size used for
the Java heap. (Introduced in 1.4.0
update 1.)

-XX:MaxHeapFreeRatio=<n>

[default = 70]

Maximum percentage of heap free
after GC to avoid shrinking.

-XX:MaxNewSize=<n>

[1.3.1 Sparc: 32m; 1.3.1 x86: 2.5m.]

Maximum size of new generation
(in bytes). Since 1.4, MaxNewSize is
computed as a function of NewRatio.

-XX:PermSize=<n[k|m]>

[default = 64mb]

Size of the Permanent Generation.

-XX:MaxPermSize=<n[k|m]>

[default = 64m]
[5.0 and newer: 64 bit VMs are
scaled 30% larger; 1.4 amd64: 96m;
1.3.1 -client: 32m.]

Size of the Permanent Generation.

-XX:MinHeapFreeRatio=<n>
[default = 40]

Minimum percentage of heap free
after GC to avoid expansion.

-XX:NewRatio=<n>

[default = 2]
[Sparc -client: 8; x86 -server: 8; x86
-client: 12.]-client: 4 (1.3) 8 (1.3.1+),
x86: 12]

Ratio of new/old generation sizes.

-XX:NewSize=<n[k|m]>

[default = 2.125m]
[5.0 and newer: 64 bit VMs are
scaled 30% larger; x86: 1m; x86, 5.0
and older: 640k]

Default size of new generation (in
bytes)

-XX:ReservedCodeCacheSize=<n
[k|m]>

[default = 32m]
[Solaris 64-bit, amd64, and -server
x86: 48m; in 1.5.0_06 and earlier,
Solaris 64-bit and and64: 1024m.]

Reserved code cache size (in bytes)
- maximum code cache size.

-XX:SurvivorRatio=<n>

[default = 8]
[Solaris amd64: 6; Sparc in 1.3.1: 25;
other Solaris platforms in 5.0 and
earlier: 32]

Ratio of eden / survivor space size

-XX:TargetSurvivorRatio=<n>

[default = 50]

Desired percentage of survivor
space used after scavenge.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://answerhub.com

5 Java Profiling with VisualVM

DZone, Inc. | www.dzone.com

Option & default value Description

-XX:ThreadStackSize=<n>

[default = 512]
[Sparc: 512; Solaris x86: 320 (was
256 prior in 5.0 and earlier); Sparc
64 bit: 1024; Linux amd64: 1024
(was 0 in 5.0 and earlier); all others
0.]

Thread Stack Size (in Kbytes). (0
means use default stack size)

-XX:+UseBiasedLocking

[5.0: false]

Enable biased locking. For more
details, see this tuning example.
(Introduced in 5.0 update 6.)

-XX:+UseFastAccessorMethods Use optimized versions of
Get<Primitive>Field.

-XX:-UseISM

[Not accepted for non-Solaris
platforms.]

Use Intimate Shared Memory.

-XX:+UseLargePages Use large page memory. (Introduced
in 5.0 update 5.)

-XX:+UseMPSS

[1.4.1 and earlier: false]

Use Multiple Page Size Support
w/4mb pages for the heap. Do not
use with ISM as this replaces the
need for ISM. (Introduced in 1.4.0
update 1, Relevant to Solaris 9 and
newer.)

-XX:+UseStringCache Enables caching of commonly
allocated strings.

-XX:AllocatePrefetchLines=<n>

[Default values are 1 if the last
allocated object was an instance
and 3 if it was an array.]

Number of cache lines to load after
the last object allocation using
prefetch instructions generated in
JIT compiled code.

-XX:AllocatePrefetchStyle=<[0|1|2]>

[0 - no prefetch instructions are
generate*d*,
1 - execute prefetch instructions
after each allocation,
2 - use TLAB allocation watermark
pointer to gate when prefetch
instructions are executed.]

Generated code style for prefetch
instructions.

-XX:+UseCompressedStrings Use a byte[] for Strings that can
be represented as pure ASCII.
(Introduced in Java 6 Update 21
Performance Release)

-XX:+OptimizeStringConcat Optimize String concatenation
operations where possible.
(Introduced in Java 6 Update 20)

Debugging Options

Option & default value Description

-XX:-CITime Prints time spent in JIT Compiler.
(Introduced in 1.4.0.)

-XX:ErrorFile=./hs_err_pid<pid>.log If an error occurs, save the error
data to this file. (Introduced in 6.)

-XX:-ExtendedDTraceProbes Enable performance-impacting
dtrace probes. (Introduced in 6.
Relevant to Solaris only.)

-XX:HeapDumpPath=./java_
pid<pid>.hprof

Path to directory or filename
for heap dump. Manageable.
(Introduced in 1.4.2 update 12, 5.0
update 7.)

-XX:-
HeapDumpOnOutOfMemoryError

Dump heap to file when java.lang.
OutOfMemoryError is thrown.
Manageable. (Introduced in 1.4.2
update 12, 5.0 update 7.)

-XX:OnError="<cmd args>;<cmd
args>"

Run user-defined commands on
fatal error. (Introduced in 1.4.2
update 9.)

Option & default value Description

-XX:OnOutOfMemoryError="<cmd
args>;
<cmd args>"

Run user-defined commands
when an OutOfMemoryError is first
thrown. (Introduced in 1.4.2 update
12, 6)

-XX:-PrintClassHistogram Print a histogram of class instances
on Ctrl-Break. Manageable.
(Introduced in 1.4.2.) The jmap
-histo command provides equivalent
functionality.

-XX:-PrintConcurrentLocks Print java.util.concurrent locks
in Ctrl-Break thread dump.
Manageable. (Introduced in 6.)
The jstack -l command provides
equivalent functionality.

-XX:-PrintCommandLineFlags Print flags that appeared on the
command line. (Introduced in 5.0.)

-XX:-PrintCompilation Print message when a method is
compiled.

-XX:-PrintGC Print messages at garbage
collection. Manageable.

-XX:-PrintGCDetails Print more details at garbage
collection. Manageable. (Introduced
in 1.4.0.)

-XX:-PrintGCTimeStamps Print timestamps at garbage
collection. Manageable (Introduced
in 1.4.0.).

-XX:-PrintTenuringDistribution Print tenuring age information.

-XX:-TraceClassLoading Trace loading of classes.

-XX:-TraceClassLoadingPreorder Trace all classes loaded in the order
referenced (not loaded). (Introduced
in 1.4.2.)

-XX:-TraceClassResolution Trace constant pool resolutions.
(Introduced in 1.4.2.)

-XX:-TraceClassUnloading Trace unloading of classes.

-XX:-TraceLoaderConstraints Trace recording of loader
constraints. (Introduced in 6.)

-XX:+PerfSaveDataToFile Saves jvmstat binary data on exit.

-XX:ParallelGCThreads=<n>

[The default value varies with the
platform on which the JVM is
running.]

Sets the number of garbage
collection threads in the young and
old parallel garbage collectors.

-XX:+UseCompressedOops Enables the use of compressed
pointers (object references
represented as 32-bit offsets
instead of 64-bit pointers) for
optimized 64-bit performance with
Java heap sizes less than 32gb.

-XX:+AlwaysPreTouch Pre-touch the Java heap during
JVM initialization. Every page of
the heap is thus demand-zeroed
during initialization rather than
incrementally during application
execution.

-XX:AllocatePrefetchDistance=<n>

[The default value varies with the
platform on which the JVM is
running.]

Sets the prefetch distance for
object allocation. Memory about
to be written with the value of new
objects is prefetched into cache
at this distance (in bytes) beyond
the address of the last allocated
object. Each Java thread has its own
allocation point.

-XX:InlineSmallCode=<n>

[The default value varies with the
platform on which the JVM is
running.]

Inline a previously compiled method
only if its generated native code size
is less than this.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://answerhub.com

Browse our collection of over 150 Free Cheat Sheets
Upcoming Refcardz

Free PDF

6 Java Profiling with VisualVM

DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome

refcardz@dzone.com

Sponsorship Opportunities

sales@dzone.com

Copyright © 2012 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
–"DZone is a developer's dream",” says PC Magazine.

R E C O M M E N D E D B O O K

Option & default value Description

-XX:MaxInlineSize=<n>

[default = 35]

Maximum bytecode size of a
method to be inlined.

-XX:FreqInlineSize=<n>

[The default value varies with the
platform on which the JVM is
running.]

Maximum bytecode size of a
frequently executed method to be
inlined.

-XX:LoopUnrollLimit=<n>

[The default value varies with the
platform on which the JVM is
running.]

Unroll loop bodies with
server compiler intermediate
representation node count less than
this value. The limit used by the
server compiler is a function of this
value, not the actual value.

-XX:InitialTenuringThreshold=<n>

[default = 7]

Sets the initial tenuring threshold
for use in adaptive GC sizing in
the parallel young collector. The
tenuring threshold is the number of
times an object survives a young
collection before being promoted to
the old, or tenured, generation.

-XX:MaxTenuringThreshold=<n>

[The default value is 15 for the
parallel collector and is 4 for CMS.
The current largest value is 15.]

Sets the maximum tenuring
threshold for use in adaptive GC
sizing.

-verbose:gc Logs garbage collector runs
and how long they're taking. I
generally use this as my first tool to
investigate if GC is a bottleneck for a
given application.

Option & default value Description

-XX:+PrintGCApplicationConcurre
ntTime

Time the applications run between
collection pauses.

-XX:+PrintGCApplicationStopped
Time

Length of the collection pauses.

-Xdebug -Xnoagent Enables debugging support in the
VM.

-Xrunjdwp:transport=dt_socket,serv
er=y,suspend=n,address=<port>

Loads in-process debugging
libraries and specifies what kind of
connection will be made.

-XX:HeapDumpPath=./java_pid.
hprof

Path to directory or file name for
heap dump.

-XX:-PrintCommandLineFlags Print flags that appeared on the
command line.

-XX:-PrintConcurrentLocks Print java.util.concurrent locks in
Ctrl-Break thread dump.

PrintGC Details Output

Additional Resources
http://java.dzone.com/articles/visualvm-refcard-additional

Mick Knutson, Mick Knutson has been a Enterprise
technology consultant, Java Architect, project
leader, Engineer, Designer and Developer, and has
gained experience in disciplines including Java EE,
Web Services, Mobile Computing, and Enterprise
Integration Solutions. He has led training courses
and book publishing engagements, authored
technical white papers, and presented at seminars
worldwide. As an active blogger and Tweeter, Mr.

Knutson has also been inducted into the prestigious DZone.com “Most
Valuable Blogger” (MVB) group, and can be followed at http://baselogic.
com, http://dzone.com/users/mickknutson and @mickknutson. Mr.
Knutson is the President of BASE Logic, Inc.

Java EE6 Cookbook for securing, tuning, and extending
enterprise applications: This book covers exciting recipes
on securing, tuning and extending enterprise applications
using a Java EE 6 implementation. http://packtpub.
com/java-ee6-securing-tuning-extending-enterprise-
applications-cookbook/book

A B O U T T H E A U T H O R S

Scala Collections
MongoDB
Modularity Patterns
PHP 5.4

Hot
Tip

The collection output for the PrintGC*.
Syntax
[GC [<collector>: <starting occupancy1> -> <ending occupancy1>,
<pause time1> secs] <starting occupancy3> -> <ending
occupancy3>, <pause time3> secs]

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://java.dzone.com/articles/visualvm-refcard-additional
http://www.baselogic.com
http://www.baselogic.com
http://dzone.com/users/mickknutson
http://twitter.com/mickknutson
http://www.packtpub.com/java-ee6-securing-tuning-extending-enterprise-applications-cookbook/book
http://www.packtpub.com/java-ee6-securing-tuning-extending-enterprise-applications-cookbook/book
http://www.packtpub.com/java-ee6-securing-tuning-extending-enterprise-applications-cookbook/book
http://www.packtpub.com/java-ee6-securing-tuning-extending-enterprise-applications-cookbook/book
http://answerhub.com

