
http://typesafe.com/platform/getstarted

© DZone, Inc. | DZone.com

Getting Started with Scala
By Ryan Knight & Nilanjan Raychaudhuri

» create a new Scala project

» An Intro tour of Scala Features

» classes and objects

» case classes

» Traits

» And much more...C
O

N
T

E
N

T
S

Ja
v

a
 E

n
t

E
r

p
r

is
E

 E
d

it
io

n
 7

What is scala?

Scala is a general-purpose programming language designed to express
common programming patterns in a concise, elegant, and type-safe
way. It smoothly integrates features of object-oriented and functional
programming languages, enabling programmers to be more productive.
Scala is an acronym for “Scalable Language”. This means that Scala
grows with you.

An important aspect of Scala is that it runs inside the JVM. That means it
can leverage existing Java Libraries and libraries written in Scala can be
called from Java.

crEatE a nEW scala proJEct

The easiest way to get started with Scala is with Typesafe Activator—an
open source tool for starting new projects using the Typesafe Platform.
To get started:

1. Download Typesafe Activator:

typesafe.com/platform/getstarted

2. Follow the instructions on the download page to launch Activator

3. Create a new application using the “Hello Scala 2.11!” template
application

If you are using the UI then Activator will automatically run your
application. You can go under the “Run” menu on the left-hand side to
see the output: Hello World.

You can either use the basic code editor in Activator or open your
project in IntelliJ or Scala IDE for Eclipse. In the Activator UI go to Code,
then select “Open In” to generate the project files for your IDE.

Your new project has the following layout:

src/main/scala - The source directory for the main Scala files

src/test/scala - The test directory for the main Scala files

build.sbt - The project build file. The details of build.sbt will be covered
in the Build section later on.

hEllo scala – an intro tour of scala fEaturEs

The most important feature of Scala is that it tends to be very enjoyable.
This is because there is no boilerplate code and a lightweight syntax, but
at the same time it has the safety of a strong static type system.

Ge
t M

or
e

Re
fc

ar
dz

! V
is

it
Re

fc
ar

dz
.co

m
BrouGht to You BY:

164
G

E
t

t
in

G
 s

ta
r

t
E

d
 W

it
h

 s
c

a
l

a

Let’s say hello to Scala by modifying the Hello.scala file either in
Activator or in an IDE. In Activator the code is automatically run after the
file is changed and saved (Ctrl + S).

In Scala, variables can either be mutable or immutable. An immutable
variable is a variable that cannot be modified after it has been created.
There are a number of reasons for using immutable variables. For
instance, they are inherently thread-safe. Another reason is that they are
easier to reason about because you know the value cannot change. The
best practice is to start off with an immutable variable and only make it
mutable if needed.

To create an immutable variable you preface it with the keyword val and
mutable variables are created with the keyword var. In the Hello.scala
file let’s start by creating an immutable String variable called first and
printing it out:

val first:String = “Hello”
println(first)

If you are running this in Activator, after you save the file go to the
Activator Run tab to see the results.

To understand what it means to be immutable, try assigning the variable
first to a new value:

first = “Something Else”

When you save it, the editor will mark the error by underling the problem
line. To see the error message mouse over to the red “x” marker on the
left. The error that is displayed is:

reassignment to val

Now let’s change first to be a mutable variable by going back up and
changing the val to var and saving the program. This time the program
compiles and if you print out the first variable after changing the value
you will see the changed value.

Continuing the exploration of Scala features, let’s look next at type
inference, which means the Scala compiler infers the type of a variable.
This allows the programmer to omit certain types annotations. To see
this in action change the declaration of the first variable by removing the
type:

http://www.dzone.com?refcardz
http://www.refcardz.com
http://typesafe.com/platform/getstarted
http://typesafe.com/

© DZone, Inc. | DZone.com

2 Ge t tinG Started with Scal a

var first = “Hello”

What you will notice is that the program still compiles. The Scala compiler
has inferred first as a String because it was assigned a String value. This is
different than a dynamic language like JavaScript that allows the type of the
variable to change. In Scala you cannot change the type of the variable after
it has been declared. For example, try assigning first to a number:

first = 2

You will get a type mismatch error saying the compiler found an Int but it
required a String. Be sure to delete this line so your sample will continue to
compile.

Type Inference is really powerful in Scala and can be used to infer the type
of variables, methods, functions, and other expressions. It should be used
with some caution though, as the Scala Style Guide (http://docs.scala-lang.
org/style/types.html) says:

“Use type inference where possible, but put clarity first, and favor
explicitness in public APIs.”

Another feature that makes Scala unique is that it is fully expression-
oriented. For example, let’s create an Int (an integer type in Scala) variable
and assign it to the result of a basic calculation:

val second = {
 val tmp = 2*5
 tmp+88
}

This assigns a value of 98 to second. Notice that it does not require an
explicit return statement and instead takes the last line to be the value
returned. In the same way, an if-else is an expression in Scala and yields a
result. We could create a String variable displayFlag that is the result of a
basic if-else test:

val second = 43
val displayFlag = if (second%2 == 0) {
 “Second is Even”
}
else {
 “Second is Odd”
}

 Or in shorthand notation this could be expressed as:

val displayFlag = if (second%2 == 0)
 “Second is even”
 else
 “Second is odd”

 Lets now dive in-depth into some more Scala features.

classEs and oBJEcts

Scala is a pure object-oriented language. Conceptually, every value is an
object and every operation is a method call. You can follow along with the
below examples by creating an additional file in the editor that has the same
name as the class. For example, to create a class Recipe add a Recipe.scala
file in the src/main/scala directory and then add the following definition in
the file:

class Recipe(calories: Int) {
 println(s”Created recipe with ${calories} calories”)
 var cookTime: Int = _ //sets 0, default value of Int
}

This creates a Scala class called Recipe with a constructor that takes
calories as a parameter. Unlike Java, the constructor arguments are included
in the class definition. Then any expressions in the body of the class are
considered part of the “primary constructor”, such as the println. If you need
alternative ways to create instances of the class, you can define secondary
constructors with different arguments, but that is not covered here.

In addition to constructor parameters, a class has fields, such as cookTime

in the previous example. These fields can either be a val or var just like a
standard variable declaration. By default the constructor parameters for a
class are only visible inside the class itself and only fields are visible outside
of the class. To understand the differences back in the Hello main, try
creating an instance of Food by invoking the primary constructor and then
try printing out the values from the class:

val r = new Recipe(100)
println(r.cookTime) //outputs 0
println(r.cookTime = 2) //sets the cookTime to 2
//This will produce an error - value calories is not a member
of
//recipe
println(r.calories)

To promote the constructor parameters to fields, a val or var needs to be
added in front of the parameter depending on whether they are supposed
to be immutable or mutable fields. For example, change the Recipe class
definition to:

class Recipe(val calories: Int) {

Then try printing out the calories again in the main method. Now the
compiler should be happy.

Method definitions in Scala start with the keyword def followed by the
name of the method and its parameters. The return type of the method
can be inferred, just like with variables. The following defines a method
estimatedEffort that calculates the estimated effort for the recipe based on
the number of servings and returns per Int. The return value is the last line
of the method.

 //declares method that returns an Int - Int return is
optional.
 def estimatedEffort(servings:Int):Int = {
 println(“estimating the effort...”)
 servings * cookTime * calories
 }

 We can also create subclasses by extending abstract or non-final classes
just like any object-oriented language. The one difference is the constructor
parameters of the class being extended need to be passed in as well.

class Food(calories: Int)
class Salad(val lettuceCalories: Int, val dressingCalories:
Int) extends Food(lettuceCalories + dressingCalories)

When extending a class we can also override members of parent classes.

// Example of Overriding Methods
class Menu(items: List[Food]) {
 def numberOfMenuItems() = items.size
}
// Dinners only consists of Salads
class Dinner(items: List[Salad]) extends Menu(items) {
 //overriding def as val
 override def numberOfMenuItems = 2 * items.size
}

val s1 = new Salad(5,5)
val s2 = new Salad(15,15)
val dinner = new Dinner(List(s1,s2))
//prints 4
println(s”Number Of Menu Items = ${dinner.numberOfMenuItems}”)

Scala does not have a static keyword like Java to mark a definition as a
static (singleton) instance. Instead it uses the object keyword to declare a
singleton object. All the members defined inside the object are treated as
static members and can be accessed without creating an explicit instance.
The astute reader might have noticed that the definition in Hello.scala is
declared as the object Hello. That is because a single instance of main is
needed for running the program.

A common use of the singleton object is for declaring constants. For
example, add the following line above the Hello main method:

val WATERMELON_CALORIES = 98

Then access the constant with the following line inside the main method:

http://www.dzone.com?refcardz
http://typesafe.com/

© DZone, Inc. | DZone.com

3 Ge t tinG Started with Scal a

println(WATERMELON_CALORIES)

Objects are commonly used to hold factory methods for creating classes.
This pattern is so common that Scala declares a special method definition
for this called apply. The apply method can be thought of like a default
factory method that allows the object to be called like a method. For
example, inside the Recipe.scala file add an object above the class
definition:

object Recipe {
 //assume the client was only guessing the calories and
 //double just in case
 def apply(calories:Int) = new Recipe(calories * 2)
}

Then back in the Hello main, change the creation of Recipe to the following:

//This call refers to the Recipe object and is the same as
calling Recipe.apply(100)
val r = Recipe(100) //apply method is called by default
println(r.calories) //outputs 200

What is interesting about the use of the Recipe object here is that no
method had to be specified—apply was called by default.

An object is considered a companion object when it is declared in the same
file as the class and shares the name and the package. Companion objects
are used to hold the static definitions related to class but do not have any
special relationship to a class.

casE classEs

Case classes in Scala are classes on steroids. When the Scala compiler sees
a case class, it automatically generates helpful boilerplate code to reduce
the amount of code for common tasks. The only difference is the class
definition has the keyword case before it:

case class Person(name: String, age: Int)

 When we prefix a class with case, the following things happen:

• Constructor parameters (such as name and age) are made immutable
fields by default. Scala does this by prefixing all parameters with val
automatically.

• Equals, hashCode and toString are generated based on the
constructor parameters.

• A copy method is generated so we can easily create a modified copy
of a class instance.

• A default implementation is provided for serialization.

• A companion object and the default apply factory method is created.

• Pattern matching on the class is made possible. This is not covered in
this introduction but is a very important reason to use case classes.

Because Person is defined as a case class it will be compiled into something
like the following:

class Person(val name: String, val age: Int) { ... }

object Person {
 def apply(name: String, age: Int) = new Person(name, age)
 ...
}

Here object Person is the companion object for class Person.

The Person class can then be created without using the new keyword:

val p = Person(“John”, 26) //same as Person.apply(“John”, 26)

We can also define additional apply methods inside classes and objects.

traits

Traits can be viewed as an interface that provides a default implementation
of some of the methods (Java 8 added something similar with default
methods on interfaces). In contrast to classes, traits may not have
constructor parameters and are not instantiated directly like a class. They can
be used similarly to an abstract class:

 //declaring a trait with an abstract method
trait Greetings {
 def sayHello: String
}

class JapaneseGreetings extends Greetings {
 override def sayHello: String = “konnichiwa”
}

The JapaneseGreetings class extends the Greetings trait and implements
the sayHello method.

Traits can also be used to provide methods and variables that are mixed into
a class instead of being extended. Let’s make this example more interesting
by adding one more trait.

trait DefaultGreetings {
 def defaultHello = “Hello”
}

class GermanGreetings extends Greetings with DefaultGreetings
{
 override def sayHello: String = “Guten Tag”
}

val g = new GermanGreetings
g.sayHello //outputs Guten Tag
g.defaultHello //outputs Hello

The GermanGreetings extends both Greetings and DefaultGreetings. The
later is mixed-in to provide the default greetings behavior. Traits can also be
mixed-in at the instance level:

val j = new JapaneseGreetings with DefaultGreetings
j.sayHello //outputs konnichiwa
j.defaultHello //outputs Hello

This particular instance of JapaneseGreetings will have both sayHello and
defaultHello methods.

functions

Functions are similar to methods in Scala except that a function is attached
to a class. Instead, functions are usually declared as an argument to another
method, like what action should be taken when a service is called or a link
is clicked on. The benefit of a function is that it allows functionality to be
treated as a method argument, or code as data.

tYpE dEscription

Traversable

The base trait of all collection types.
Declares the foreach method and
defines other methods that are
available on all collections.

Iterable
Declares the iterator method. All
collection types that extend Iterable
can provide iterator.

Seq
The base trait for sequences. A
sequence has a defined order of
elements.

IndexedSeq The base trait for array-like sequences.

LinearSeq The base trait for linked-list-like
sequences.

http://www.dzone.com?refcardz
http://typesafe.com/

© DZone, Inc. | DZone.com

4 Ge t tinG Started with Scal a

Set An iterable collection type that
contains no duplicate elements

SortedSet Set that has a defined order of
elements.

Map

Map is an iterable pair of keys
and values. The key value pair
is represented by a tuple of two
elements.

Functions are also values that are assigned to variables, and functions also
have types. Methods are not values. These function values can then be
passed around like other variables. The following creates a function that
finds the successor of any given parameter and assigns that function to the
succ variable.

//creates a function that takes an Int as a parameter and
returns //Int.The variable type in Scala is formally declared
as Int => Int
val succ = (foo: Int) => { foo + 1 }

Here, foo is the name of the parameter and what comes after => is the body
of the function.

We can invoke this function like we invoke methods:

succ(10) //outputs 11

We can also pass functions as a parameter to other functions and methods.
In the following example, the succAndLog method takes two parameters, an
integer value, and a function that takes a single Int, and returns an Int.

def succAndLog(someInt: Int, succ: Int => Int) = {
 println(s”Incrementing $someInt”)
 succ(someInt)
}

succAndLog(10, (i: Int) => i + 1) //Incrementing 10 and returns
11

collEctions

The Scala collections library is one of the most powerful features of the
language. The library implements all the common data structures such as
sequences, sets, and maps (also called dictionaries). Scala collections come
in many forms—they can be immutable, mutable, and parallel. The language
encourages you to use immutable collection APIs and imports them by
default.

Here is how collection types relate to each other:

Here are a few examples of how collection classes can be instantiated:

val marks = IndexedSeq(50 70, 65) //creates an index sequence
val numbers = Vector(11, 22, 33) //creates sequence of numbers
val languages = Set(“Scala”, “Haskell”, “Java”) //set of strings
//creates a map with a key-value pairs
val nameAndGrades =
 Map(“John” -> ‘C, “Steve” -> ‘A, “Mary” -> ‘B) // -> defines
pair
val range = 0 to 10 //range of all the numbers from 0 to 10

Now let’s see how we can perform some common tasks using Scala
collections.

//transform all the elements of the collection

val xs = Vector(10, 20, 30, 40)
//map executes the given anonymous function for each element
in the //collection
val newList = xs.map(x => x/2)

println(newList) //outputs new sequence Vector(5, 10, 15, 20)
println(xs) //outputs the original collection because its
immutable

 //filtering

val xs = Vector(1, 2, 3, 4, 5).filter(x => x < 3)
println(xs) //outputs new collection Vector(1, 2)

 //grouping elements of collections based on the return value

val groupByOddAndEven = Vector(1,2,3,4,5).groupBy(x => x % 2 ==
0)
println(groupByOddAndEven) //outputs Map(false -> Vector(1, 3,
5), true -> Vector(2, 4))

 //sorting

val lowestToHighest = Vector(3,1,2).sorted
println(lowestToHighest) //outputs Vector(1, 2, 3)

Scala provides mutable counterparts of all the immutable collections. For
example, the following creates a mutable sequence of numbers:

val numbers = scala.collection.mutable.ListBuffer(10, 20, 30)
numbers(0) = 40 //updates the zeroth element to 40
println(numbers) //outputs ListBuffer(40, 20, 30)

Here are some of the useful methods defined in the Traversable trait that are
available to all collection types:

MEthods dEscription

xs.size The number of elements in the
collection.

xs ++ ys A collection consisting of the elements
of both xs and ys.

xs.map(f) The collection obtained from applying
the function f to every element in xs.

xs.flatMap(f)

The collection obtained from applying
the collection valued function f to
every element in xs and concatenating
the results.

xs.filter(p)
Returns a new collection consisting of
those elements of xs that satisfy the
predicate p.

xs.find(p)
An option containing the first element
in xs that satisfies p, or None if no
element qualifies.

xs.foldLeft(z)(op)

Apply binary operation op between
successive elements of xs, going from
left to right and starting with z as
initial value.
val x = Traversable(1, 2, 3, 4)
//sums all the numbers
x.foldLeft(0){(a, e) => a + e}

http://www.dzone.com?refcardz
http://typesafe.com/

© DZone, Inc. | DZone.com

5 Ge t tinG Started with Scal a

xs.foldRight(z)(op)

Apply binary operation op between
successive elements of xs, going from
right to left and starting with z as
initial value.

xs.head The first element of the collection(or
some element, if no order is defined).

xs.tail The rest of the collection except
xs.head.

Scala provides another version of collection that evaluates elements in
parallel. This is perfect for dividing work and taking advantage of available
processing power of multi-core processors. The following example creates
an instance of parallel seq collection and transforms each element in parallel.

val numbers = scala.collection.parallel.ParSeq(1, 2, 3, 4, 5,
6, 7)

The map method of parallel collection tries to run the given function in
parallel and evaluates each element in parallel:

val newNumbers = numbers.map {x =>
 //prints the name of current thread
 println(s”Current thread ${Thread.currentThread.getName}”)
 x + 1
}

Run the above code a few times to see how different threads are used for
processing the map method.

concurrEncY

Concurrency is hard unless you have the right level of abstraction. The most
common approach to solve concurrency problems is multi-threaded code
with mutable states, which is very hard to maintain and reason about. And
it makes it very difficult to find bugs because they only tend to show up
under a large load. Scala takes a different approach to concurrency. Instead
of threads, which are a very low level constructs, Scala provides developers
with a higher level of abstraction with Futures and Promises. (Akka [http://
akka.io/] also provides the Actor programming paradigm that is also a high-
level abstraction for concurrent programming. See the Further Learning
section for additional references.) This section will only explore Future.

Future is an object holding a value that may become available at some
point. This value is usually the result of some other computation. A Future
object is completed with either a value or an exception. Once it is completed
it becomes in effect immutable—it can never be overwritten. The simplest
way to create a Future object is to invoke the Future method, which starts
an asynchronous computation and returns a Future holding the result of
that computation. The result becomes available once the Future completes.

import scala.concurrent.ExecutionContext.Implicits.global
 import scala.concurrent.Future
 def someTimeConsumingComputation(): Int = { 25 + 50}
 val theFuture = Future { someTimeConsumingComputation() }

The line import ExecutionContext.Implicits.global above makes the default
global execution context available. An execution context is a thread pool
that executes the tasks submitted to it. The future object uses this execution
context to asynchronously execute the given task. In this case the task is
someTimeConsumingComputation. The statement Future { … } is what
actually starts Future running in the given execution context.

Once Future is completed, registering a callback can retrieve the value. A
separate callback is registered for both the expected value and an exception
to handle both possible outcome scenarios:

theFuture.onComplete {
 case Success(result) => println(result)
 case Failure(t) => println(s”Error: ${t.getMessage}”)
}

xs.mkstring(sep)
Produces a string that shows all
elements of xs between separators
sep.

following line will complete the future with exception:

val anotherFuture = Future { 2 / 0 }

Futures are very handy tool to run multiple parallel computations and then
compose them together to come up with a final result. The following
example starts two asynchronous tasks and could run in parallel if there
were enough CPU cores available:

def stockQuote(currency: String): BigDecimal = {...}

val usdQuote = Future { stockQuote(USD) }
val chfQuote = Future { stockQuote(CHF) }

Scala’s for-expression can be used to compose (or combine) the results of
multiple Future objects into a single result. In this example the Futures can
be composed together to make a decision as to whether we should buy
stocks in CHF. To do this we reference the futures inside the for {...} block
and take the values that are returned from the future objects. Those values
can then be used in the yield {...} block to check if the value is profitable. An
important point to notice is the Future is created outside the for-expression
and the for-expression is acting as a callback for when the Future
completes. If the Future were created inside the for-expression then the
second future will only be created when the first Future completes
successfully.

val isProfitable = for {
 usd <- usdQuote //returns the usd value when future is
completed
 chf <- chfQuote //returns the chf value when future is
completed
 } yield {
 //this will only be executed when both the futures
complete
 isProfitable(usd, chf)
 }

Finally, a callback is registered to retrieve the value of the isProfitable
method.

isProfitable.onComplete {
 case Success(result) => println(result)
 case Failure(t) => println(s”Error: ${t.getMessage}”)
 }

for-coMprEhEnsions

A for-comprehension in Scala is like a Swiss Army knife: you can do many
things with it using basic simple elements. The for expression in Scala
consists of a for keyword followed by one or more enumerators surrounded
by parentheses and an expression block or yield expression.

The following example adds all the elements of the first list with all the
elements of the second list and creates a new list:

Here aList and bList are generators. The job of the generator is to iterate
through a collection and produce elements. For each occurrence of a
(element of aList collection) and b (element of bList collection) variables
the expression after yield is executed. In this case we are just adding both
the elements.

For expressions can also include guard clauses and variable definitions. The
following example only adds even number elements from the first collection
to all the elements of the second collection:

http://www.dzone.com?refcardz
http://typesafe.com/

© DZone, Inc. | DZone.com

6 Ge t tinG Started with pl ay Scal a

Val newList = for {
 a <- aList if a % 2 == 0
 b <- bList
 x = a + b //defining new val and using it inside yield
} yield x
println(newList) //prints List(6, 7, 8)

The if condition after a <- aList is called a guard clause and it will filter out all
the odd numbers and only invoke the aList generator for even numbers.

Build

Scala can be built with a number of tools such as Gradle, Maven or even
Ant. The most common way to build Scala however is sbt. The sbt build
tool is used for managing dependencies, compiling the app, running the
app, and running the tests. The primary build file is the build.sbt in the root
of the project directory and then the project/build.properties file specifies
the version of sbt to use along with the build properties. The primary build
definition in the build.sbt file looks something like:

name := “””hello-scala”””
version := “1.0”
scalaVersion := “2.11.0”
libraryDependencies += “org.scalatest” % “scalatest_2.11” %
“2.1.3” % “test”

The libraryDependencies section of the build.sbt defines the application
dependencies, which should be available in a public Maven repository. You
can also add your own Maven repository using the resolvers setting. The
dependencies in libraryDependencies are a comma-separated list in the
form:

“group” % “artifact” % “version”

 As an example, to add the jsoup driver add the following line:

libraryDependencies += “org.jsoup” % “jsoup” % “1.7.3”

Sbt build also supports sub-projects so that you can partition your
application into multiple smaller pieces. This can improve build times and
make different pieces more easily reusable.

More information about sbt can be found on the sbt homepage (http://
www.scala-sbt.org/).

furthEr lEarninG

Coursera provides a free online Scala training course: https://www.coursera.
org/course/progfun

Community-driven documentation for Scala can be found at: http://docs.
scala-lang.org

Typesafe provides a number of Free E-Books at: http://typesafe.com/
resources/e-books

Activator contains a number of other templates that will get you started
learning about other aspects of Scala and the Typesafe Platform, like:

Atomic Scala Examples: http://typesafe.com/activator/template/atomic-
scala-examples

An introduction to sbt: http://typesafe.com/activator/template/hello-sbt

Hello Akka!:

http://typesafe.com/activator/template/hello-akka

Hello Play!:

http://typesafe.com/activator/template/hello-play

For a full list of templates check out: http://typesafe.com/activator/
templates

Twitter Scala School also provides a great Scala Introduction: http://twitter.
github.io/scala_school

aBOUt the aUthOr recOMMended BOOK
Ryan Knight is a consultant and trainer for Typesafe where he helps others learn
and use Scala, Akka and Play. Ryan frequently does training and presentations at
conferences around the world, such as JavaOne, Devoxx, and many other Java get–
togethers. He has over 15 years of experience with enterprise software development.

Nilanjan Raychaudhuri is a consultant/trainer and member of the Play
framework team. He works for Typesafe. He has more than 14 years of experience
managing and developing software solutions in Java, Ruby, Groovy and Scala.

Written by the designer of the language, Martin Odersky, Co-authored by Lex
Spoon and Bill Venners. This book takes a step-by-step tutorial approach to
teaching you Scala. Starting with the fundamental elements of the language,
Programming in Scala introduces functional programming from the
practitioner’s perspective, and describes advanced language features that
can make you a better, more productive developer.

BUy nOw

Browse our ColleCtion of 250+ Free reSOUrceS, inCluding:
reSearch GUideS: Unbiased insight from leading tech experts
reFcardz: Library of 200+ reference cards covering the latest tech topics
cOMMUnitieS: Share links, author articles, and engage with other tech experts

JOin nOw
DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513
888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com
Sponsorship Opportunities
sales@dzone.com

Copyright © 2014 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0 $7.95

DZone communities deliver over 6 million pages each month to more than 3.3 million software
developers, architects and decision makers. DZone offers something for everyone, including
news, tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

http://www.dzone.com?refcardz
https://coursera.org/course/progfun
https://coursera.org/course/progfun
http://docs.scala-lang.org/
http://docs.scala-lang.org/
http://typesafe.com/resources/e-books
http://typesafe.com/resources/e-books
http://typesafe.com/activator/template/atomic-scala-examples
http://typesafe.com/activator/template/atomic-scala-examples
http://typesafe.com/activator/template/hello-sbt
http://typesafe.com/activator/template/hello-akka
http://typesafe.com/activator/templates
http://typesafe.com/activator/templates
http://typesafe.com/activator/templates
http://http://twitter.github.io/scala_school/
http://http://twitter.github.io/scala_school/
http://twitter.github.io/scala_school/
http://www.dzone.com/user/register/
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://amazon.com/Programming-Scala-Comprehensive-Step---Step/dp/0981531644/ref=sr_1_1?ie=UTF8&qid=1334865621&sr=8-1

