

DZone, Inc. | www.dzone.com

By Mike Keith

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 J

PA
 2

.0

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#127

CONTENTS INCLUDE:
n	 Whats New in JPA 2.0
n	 JDBC Properties
n	 Access Mode
n	 Mappings
n	 Shared Cache
n	 Additional API and more...

Getting Started with
 JPA 2.0

• Deliver higher quality software, faster

• Track changes in all your software
 products, at any time

• Control risk management of project
 releases

• Predict project costs and delivery time

• Increase developer productivity
 with fail-fast feedback loops

Achieve fail-safe
application deployments

Experience ElectricDeploy.

The ability to quickly, reliably, and continuously deliver quality software is a essential part of
an organization’s ability to deliver business value to their customers. ElectricDeploy is a
robust enterprise-grade, end-to-end DevOps deployment solution. With hundreds of
out-of-the-box integrations to essential software development, middleware, and
infrastructure management tools, Electric Cloud provides a complete solution to develop
and deliver applications across physical, virtual, and cloud environments.

ENTER NOW

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.electric-cloud.com/

DZone, Inc. | www.dzone.com

G
et

 M
o

re
 R

ef
ca

rd
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#165
D

ep
lo

ym
en

t
A

u
to

m
at

io
n

 P
at

te
rn

s

By: James Betteley

ABOUT THIS REFCARD

Deploying software to a production environment is usually the final step in
the product delivery lifecycle. In an ideal world, the deployment is simple,
the experience is enjoyable, it works the first time, and we all go to the pub
afterwards to celebrate yet another successful production deployment
(yay!).

And now back to reality. Quite often, when we do production deployments,
it’s to fix something that’s already broken, or we’re releasing a project
that’s already overdue, or there is simply a great deal of pressure from the
business to see the next great piece of functionality go live. The pressure is
on, and all eyes are on you. To add to your list of problems, the deployment
process is long winded, manually intensive, unreliable, and you’ve never
done it before. You’re staring down the barrel of an all-nighter, and you’re
already on your fifth cup of coffee.

Reality sucks.

But it doesn’t have to be that way! With the application of some fairly
simple good practices, production deployment can be just a formality. The
only pressure you’ll have is deciding who’s buying the first round.

DEPLOYMENT PATTERNS

I will outline 7 patterns for software deployment to be regarded as
generally reusable solutions to common issues within software
deployment. Below is a table of patterns, and the common issues they
mitigate.

Pattern Mitigates
Automate deployments Error prone manual deployments, unclear

requirements, lack of auditability

The 5 Rs of application
deployment

Time consuming deployments, high risk changes to
production, human error, messy production systems,
complicated roll-backs.

Standardize where you can Repetition of similar tasks

Pattern Mitigates
Make your deployments
granular

Large scale deployments for small-scale changes

Treat configuration files as
code

Configuration files being different on different
environments ("but it works fine on my machine!")

Sanity test your deployments Inconsistencies/bugs built into the deployment
process

KISS! Overly complicated production environments,
troubleshooting nightmares!

PATTERN #1: AUTOMATION IS KEY

PATTERN: Automated deployments using tools and scripts

ANTI-PATTERN: Manual deployments by hand

It’s too much to expect a person to manually deploy a complex software
solution to an equally complex production environment time after time
and never make a mistake. The odd mishap is what makes us human. So
let’s leave the machines to do the stuff they’re good at: the repetitive, labor
intensive tasks – tasks like deploying software!

So the first good practice is to automate software deployments. In its
most simple form, this could mean simply writing a script to perform the
deployments, or using a specific tool to do the leg-work for you.

But what about the environment we’re deploying our applications on? How
do they get deployed? If we’re deploying our infrastructure changes by
hand, then we’re not fully leveraging the power of deployment automation.

Automating deployments brings with it a heap of other benefits as well,
such as increased speed, greater reliability, and built-in audit trails. These
benefits can be built into your automated software deployments with very
little effort for maximum reward.

CONTENTS INCLUDE:

❱ Deployment Patterns

❱ Automation is key

❱ Standardize where you can

❱ Make your deployments granular

❱ Treat configuration files as code

❱ Sanity test your deployments...and more!

Deployment Automation Patterns

Brought to you by:

CONTENTS INCLUDE:

❱ Drupal Menus

❱ Types of Drupal Pages

❱ Types of Content Nodes

❱ Configure URL Aliases

❱ Create a Menu

❱ Modules... and More!

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.electric-cloud.com/
http://www.electric-cloud.com/

2 Deployment Automation Patterns

DZone, Inc. | www.dzone.com

Figure 1 Automation lies at the center of good deployment practice

Why Should I Script It?
I know, it’s simple. You could do it in your sleep, there’s no need to write a
script to do it, is there? Yes, there is.

Let’s say you’re deploying a jar file to a directory and changing a line in a
config file. That’s simple enough to do! But if you’re doing it manually, then
it’s also simple enough to get it completely wrong. It’s called human error
and the best thing about it is you don’t even know you’re doing it.

Scripting your deployments gives you a nice cookie trail of what you’ve just
done, so if things do go awry, you can look at the script and step through it.
You can’t replay and step through random human errors!

You can use just about any scripting language to script your software
deployments, but again there are some good practices which should be
brought into consideration.

•	 Verbosity – You probably don’t want to have to read the
world’s most verbose scripts when you’re troubleshooting your
deployments.

•	 Clarity/readability – Pick a language that’s readable and not

ambiguous.

•	 Support – First thing you do when your script gives you an error?
Google it, of course! The bigger the support community, the better
(sometimes).

•	 Personal taste – Never overlook people’s personal taste when it
comes to choosing a scripting language. If the whole team want’s to
use Perl, then maybe they will just feel a lot happier using Perl!

Here’s an example of a simple task which is quite commonly done at the
beginning of a deployment – working out the free disk space. Three
different scripting languages provide three fairly different scripts:

Shell :
	 #!/bin/sh
	 df -H | awk ‘{ print $5 “ “ $1 “ “ $6 }’

Ruby (First you need to install Ruby and ruby gems. Then sys-
filesystem):
	 require ‘rubygems’
	 require ‘sys/filesystem’
	 include Sys
	 stat = Sys::Filesystem.stat(“/”)
	 mb_available = stat.block_size * stat.blocks_available 	
	 / 1024 / 1024
	 print mb_available
	 print “MB available!\n”

Perl:
	 use Filesys::DiskFree;
	 $value = new Filesys::DiskFree;
	 $value->df();
	 print “Available space “.$value->avail(“/”).” bytes\n”;
	 print “Total space “.$value->total(“/”).” bytes\n”;
	 print “Used space “.$value->used(“/”).” bytes\n”;

Each script varies in its relative complexity and verbosity, and the output
is subtly different from each one. In this very basic example, the Ruby
script requires more effort to setup and write, while the shell script is very
straightforward. However, deployment scripts are a lot more complex
than this, and a slightly more elegant language like Ruby might come into
its own depending on the requirements. Ultimately you need to choose a
scripting language which is fit for purpose and which the users feel most
comfortable with.

Automating Infrastructure Deployments
Deploying servers can be an onerous and highly manual task. Or you
could automate it and make it a simple manual one! Thankfully, there are a
number of tools available to help us do this. VMware is a popular choice of
virtualization software, and can be used to deploy and configure anything
from individual vms, to large vm farms. PowerCLI is a command line tool
which allows us to automate these tasks. There’s a wealth of information,
code snippets and examples in the communities to help get you up and
running. Here’s an example of how to deploy a number of VMs from a
single template, and apply some guest customizations:

$vmcsv = import-csv resources/vms.csv

ForEach ($line in $vmcsv){

New-VM -VMHost $line.vmhost -Name $line.vmName
-GuestCustomisation $line.guestCustomisation -Template $line.
template

}

The script reads from a CSV file containing information such as the host to
deploy to, the new vm name to use, the guest customization to apply and
the template to use. The CSV file will look similar to this:

host, name, customisation, template

esx01, mynewxpvm01, IE6, xpTemplate

esx01, mynewxpvm02, IE7, xpTemplate

esx02, mynewxpvm03, IE8, xpTemplate

The guest customization script can do numerous basic tasks such as
setting time zones and registering the VM on a domain. However, we
can automate even further to perform tasks such as installing software
by using the PowerCLI script to invoke another script that resides on the
template, and passing in relevant vm-specific parameters using PowerCLIs
Invoke-VMscript.

If VMware and PowerCLI are good tools for vm deployment, then tools such
as Chef, Puppet and CfEngine are great for configuring them. The question
should not be whether or not to use them, rather, which one should I use?

Chef, Puppet and CFengine all provide automated scripted solutions for
deploying applications, policies, accounts, services, etc. to your servers.
Their underlying similarity is that they provide users with a centralized
system for managing and deploying server configurations on top of your
VM.

While the likes of CFengine, Chef and Puppet are focused on configuration,
tools such as JumpBox, Capistrano and Fabric are geared more specifically
to application deployment. The one thing they share in common is that they
all provide automated solutions.

Electric Cloud’s ElectricCommander is another automated solution that
provisions physical, virtual and cloud infrastructure, automatically spinning
up environments and decommissioning them when your tasks are
completed.

Continuous Delivery and DevOps
With scripted, automated deployments we can expand our traditional
continuous integration (CI) system to include software delivery. If our build
passes all the unit tests then we can deploy it to a test environment, and
with automated infrastructure deployments, we can even provision those
environments automatically. Continuous delivery is the logical extension
of continuous integration – if a build passes all the tests on the QA
environment, then it’s automatically deployed to a UAT environment. If it
passes all the tests there, it could be automatically deployed to production.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

3 Deployment Automation Patterns

DZone, Inc. | www.dzone.com

This system is only made possible with automated deployments. The
workflow of builds moving from development all the way through to
production can be imagined as a pipeline – indeed, continuous delivery and
release pipelines are becoming increasingly frequent bed-partners. Here’s
an example of a build pipeline in a continuous delivery system:

One of the key attributes in this system is the visible progression of a
release from one stage (or environment) to the next. This is akin to a
release workflow management process. As the build progresses along
the pipeline, from left to right in the picture above, the release moves from
development, through QA and UAT and into the hands of the Operations
team. It’s a seamless progression with no manual handover, and so the
development and operations groups must be tightly coupled. This is the
foundation of the DevOps movement – breaking down the traditional
barriers between development and operations, and once again, automation
is at the heart of it!

Naturally a number of tools are available to support this workflow. Their key
attributes are:

•	 Workflow management

•	 Build tracking/pipelines

•	 Environment management/procurement

•	 Reporting

•	 Auditing

•	 Artifact management

Tools like Thoughtworks’ Go provide much of the functionality mentioned
above, but Go is generally focused on Continuous Integration. The pipeline
visualization provides a certain degree of workflow management and the
environment management functionality provides a one-stop-shop for
tracking which agents are assigned to particular environments. Go actively
encourages collaboration between development and operations; it’s
designed to be a central tool for developers and operations staff alike – for
the developer it provides state of the art CI (with all the usual trimmings
of test reporting, build metrics and so on) and for the Operations team it
provides a good environment management interface, release tracking, and
a simple UI for doing deployments (which can literally be just a click of a
button).

Electric Cloud’s ElectricDeploy is a purpose built software delivery tool built
upon their ElectricCommander platform, which firmly embraces the DevOps
culture. Like Thoughtworks, Electric Cloud encourages collaboration
between development and operations, but they also ensure consistency
and visibility across different environments and the whole application
delivery lifecycle. ElectricDeploy enables you to take snapshots of your
application versions and uses application and environment models to
ensure consistent deployments across all environments and any type of
infrastructure (physical, virtual or cloud). It leverages the pipeline concept
and is unique in its ability to address failure management (allowing users to
configure success/failure thresholds etc.).

This space is likely to become rich with enterprise tools as the DevOps
movement gathers pace. Their key features are likely to be built on:

•	 collaboration between teams

•	 breaking down traditional barriers

•	 a focus on automation

•	 continuous delivery

•	 high visibility

PATTERN #2: THE 5 RS

PATTERN: Build the 5 Rs into your deployment process!

ANTI-PATTERN: Unreliable, slow, manual deployments that cause
deployment engineers to lose their hair prematurely!

The 5 Rs of software deployment represent the principles we should follow
when we design our software deployment processes, and the criteria we
should consider when evaluating existing deployment tools.

Software deployments should be:

•	 Rapid
•	 Reliable
•	 Repeatable

And it should:

•	 Reduce Risk

And if all else fails:

•	 Roll-Back!

Make software deployments as rapid as possible. Don’t deploy anything
you don’t have to deploy. Often, software is shipped with various different
supporting applications, such as application/web servers and databases. If
you are hosting your own application and you don’t need to re-deploy your
web server each time, then don’t! Keep the size of your deployment artifact
as small as possible to make the deployment as fast as it can be.

Deployments to production must be reliable. When we deploy to production,
we should simply be repeating the exact same steps as were undertaken
when the application was deployed to the dev-test environment, the
QA environment, the UAT environment and the Pre-Prod environment.
It should use the same deploy script and deploy the same artifact. The
only difference is the environment to which we are deploying. The point is
that by the time we deploy our artifact to production, we have tested the
deployment process several times over, on several other environments,
and we should now be confident in the reliability of our deployment scripts.
We should never deploy artifacts by copying them from one environment
to another - the artifacts could have undergone changes during testing,
or someone could have edited the artifacts while they resided on a test
environment.

Do this:

NOT this:

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

4 Deployment Automation Patterns

DZone, Inc. | www.dzone.com

Deployments should be repeatable, that is to say that if we did a
deployment of the same artifact 100 times, we should confidently expect
to see the same result 100 times. If we deploy version 1.0.0 of MyApp
to production, then do some changes to our deploy script and re-deploy
1.0.0 of MyApp, we could very easily see a different result. This is not
repeatable. To prevent this situation from occurring, deployment scripts
should be treated as code that is shipped with the application. If that script
needs changing, then MyApp should be re-packaged, re-versioned and re-
deployed to all the environments until it reaches production. The key here is
that any new artifact is re-labeled with a new version number – you should
never be able to build 2 different artifacts with the same name and version
number. Another way of ensuring repeatability is to version the deploy
scripts and use a configuration management process to bind a particular
version of your application to the deploy script.

Another way of ensuring repeatability is to version the deploy scripts and
use a configuration management process to bind a particular version of
your application to the deploy script.

An effective versioning system is important for ensuring that no two
different artifacts can ever have the same version number. Most
Continuous Integration (CI) systems are capable of pulling in change
list numbers from source control, as well as generating their own build
numbers. Consider using a system that increments a build number every
single time a build is initiated. For example:

Every single time a build is created, the build number is guaranteed to
increment, even if it’s a rebuild. This ensures that provided this build is
“signed off” on QA/UAT/Pre-Live then it will be identical when we deploy
it to production. The SCM id number (usually a commit id) is useful for
traceability – you can trace back to the actual code changes which caused
the build, and see the areas of your application that have been changed.

Risk is reduced by eliminating human error, and this is done by automating
tasks that are better suited to our trusty computers, as mentioned in
pattern #1.

Roll-Backs are our safety net. If anything goes wrong, it is comforting
to know that we can reliably restore to a previous working version with
minimum fuss. This is where symlinks (symbolic links – analogous to
shortcuts on Windows) are very popular. Deploy your application to a
versioned directory and use a symlink to point to it. If the deployment fails,
simply re-point the symlink to the older version. A note of warning though –
don’t leave too many old versions lying around on the system. They can get
in the way, take up valuable space, and hamper troubleshooting.

PATTERN #3: STANDARDIZE WHERE YOU CAN

PATTERN: Emphasize convention over configuration. Look for common
attributes in your deployments, and standardize their behavior using
scripts. Encourage common deployment behavior within the application
development teams.

ANTI-PATTERN: Writing a new deploy script for every application.

Do not continually re-invent the wheel when it comes to deployments.
Many deployment tasks are fairly similar, they often involve copying one
file or directory to an application server and starting it up. If this behavior
is common to a number of applications, then extract it into a common
file and use it across your different projects. Alternatively, use one of the
numerous deployment tools available on the market - one might well
fit your deployment needs. For example, Capistrano and Fabric provide
ready-made deployment wrappers for deploying applications over ssh
(Capistrano being Ruby while Fabric uses Python).

Sample Fabric script for deploying to a collection of servers:

from fabric.api import *
from __future__ import *

env.hosts = [‘server1’, ‘server2’, ‘server3’]

def deploy():
src_dir = ‘/my/src/dir’
with cd(src_dir):
	 run(“git pull”)

Rather than use different deploy scripts for each application or for different
environments, Fabric (as with Capistrano) allows you to reuse the same
common logic to deploy applications to numerous different servers or
environments simply by executing a script. In the example above, we’re
pulling down changes from git onto our 3 servers, but only executing the
script once.

PATTERN #4: MAKE YOUR DEPLOYMENTS GRANULAR

PATTERN: Deploy the smallest module of your stack if there is a valid
business need to do so.

ANTI-PATTERN: Deploying your whole IT stack just to make a single file
change
If your production suite consists of numerous web applications, a database
and an application server or two, then it’s hard to justify deploying the
whole stack just to be able to correct a spelling mistake on your homepage.
Doing that would be time consuming, and potentially more risky.
Strange as it may sound, doing full stack deployments isn’t as rare as
you might think. Nevertheless, it does lack a lot of flexibility. It would be
favorable to be able to deploy the smallest possible component, a single
file for example – but there is a trade-off of course. The more granular your
deployments are, the more effort it requires to deploy your whole stack,
should the need arise.

What we must do is determine exactly how granular our deployments need
to be. Are we more likely to deploy parts of our stack, or our whole stack?
Usually it’s the former. And we can break that down even further. We can
go as far as deploying individual libraries if we need to as long as there’s a
strong enough business case for it, and the libraries are versioned.

Generally speaking, the smaller the deployment the easier it is to deploy,
and the easier it is, the less risk there is involved. It is also quicker to
deploy smaller components than a whole stack. One thing that we need to
consider is the business requirement for our releases: do the customers
need us to be able to deploy rapidly and frequently? If so, then the fact that
small-sized deployments are generally less risky and more rapid should
be taken into account. If we have no business requirement to deploy
frequently and rapidly – for instance if the customers don’t want any
changes but want high service availability, then a quarterly or half-yearly
release schedule might be more appropriate. Given these timescales, by the
time a release comes around, it’s likely that you’re going to want to release
a large proportion of your stack – in which case a full-stack deployment
might be well suited. These are generalizations and not a firm rule – there
are some very efficient companies who do full stack deployments on a
frequent basis.

Requirement Granularity
Daily Releases Small - Individual jars, dlls

Weekly Releases Medium - Small self-contained sites,
small apps

Monthly Releases Large - whole applications, large sites,
whole stack

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

5 Deployment Automation Patterns

DZone, Inc. | www.dzone.com

PATTERN #5: TREAT CONFIGURATION FILES AS CODE

PATTERN: Use tokens or placeholders in your config files (the dev “values”
could actually act as the tokens themselves).

ANTI-PATTERN: Editing config files by hand in-situ.

Along with databases, config files are what make deployments really
interesting. They're the one difference between a deployment to production
and a deployment to any other environment. As such, we need to have a
great deal of visibility and control over config file changes.

Application configuration files should be stored in a central repository,
ideally alongside the application source code (although for various reasons
this isn’t always possible). They should never be edited in-situ. As with any
source file, changes should be committed to source control and tested on
each environment before going live. Editing config files on the production
environment quickly leads to a maintenance nightmare, and you will
find it hard to make any changes to the environment for fear of breaking
something.

But how can you test config files when they’re different for each
environment? Well, actually, the files are often very similar on each
environment. Only passwords, server names, connection strings and
the like tend to differ, and these should be managed in the form of token
substitution during the deployment process.

Use a single tokenized configuration file for development, and during your
deployment process simply replace the tokens with the relevant value for
the environment. An example:
This is a configuration file for a test environment:

This is a configuration file for a test environment<add key=”DB:Connection” value=”Server=TestServer;Initial
Catalog=TestDB;User id=Adminuser;password=pa55w0rd”/ >

The master version kept in source control could look like:

<add key=”DB:Connection” value=”Server=%DB_SERVER%;Initial
Catalog=%DB_NAME%;User id=%DB_UID%;password=%DB_PWD%”/ >

Then, during the deployment process, the deploy script will replace the tokens
with the relevant values for the environment you are deploying to. Here’s an
example of a sed script which would replace the tokens in the example above:

s/%DB_SERVER%/TestServer/i

s/%DB_NAME%/TestDB/i

s/%DB_UID%/Adminuser/i

s/%DB_PWD%/pa55w0rd/i

In some cases using tokens is not convenient for development, and so the
tokens themselves are replaced with actual development values. The
deployment process then searches for and replaces these development
values at deploy time.
Token substitution is the underlying mechanism by which many common
deployment tools operate. They essentially map values to environments,
and substitute the relevant values when you deploy to a particular
environment. Octopus Deploy (an automated deployment solution for .Net
applications) uses configuration file transforms and variable substitution
to manage environmentally sensitive configuration settings such as
connection strings and passwords.

PATTERN #6: SANITY TEST YOUR DEPLOYMENTS

PATTERN: Have a detailed expectation of what your deployed system
should look like (this is the acceptance criteria) and test for it.

ANTI-PATTERN: Assuming what you have deployed is correct!
Before we do a production deployment, we really ought to know exactly
how our system should look and behave once the deployment is complete.
This should be treated as our “acceptance criteria” and unless we can prove
that it has been met then the job isn’t done.
Perhaps we might have a list of files and folders that we expect to see on
our Live system when the deployment is done – in that case we can simply
write a test to make sure what we get is what we are expecting.

Likewise we ought to know the md5 checksums of the binaries we deploy
– this too can be tested once the deployment is complete. These tests
should be automated and built into our deployment process. For example,
we could write a verifier script which checks that all the directories we
deployed have been granted the correct permissions. We could simply
execute this verifier script at the end of our deployment.

Shell script to verify directory permissions (let’s call it verifier.sh):

cat results/temp_dir_info.txt | grep -v drwxr-xr-x | grep rwxr-
-r-- > results/permission_report.txt

if cat results/temp_dir_info.txt | grep -v drwxr-xr-x | grep
rwxr--r-- > $null ; then

 echo “Some permissions don’t match expectations”

	 echo “Please check the results/permission_report.txt 	
	 for more information”

	 echo “---
------------------------------------”

else

	 echo “Congratulations!!! All files and folders have the 	
	 expected permissions”

	 echo “---
------------------------------------”
fi

Executing the verifier at the end of our Fabric deployment script:

from fabric.api import *

from __future__ import *

env.hosts = [‘server1’, ‘server2’, ‘server3’]

def deploy():

src_dir = ‘/my/src/dir’

with cd(src_dir):

	 run(“git pull”)

	 run(“verifier.sh”)

Below is a table containing some common sanity checks that we might
want to perform post-deployment.

Verification Acceptance Criteria
Check correct versions of supporting
infrastructure are present

OS version, the version of java/.NET
installed on the target, the versions of
IIS, Tomcat etc. all as expected. Machine
architecture is correct (64 or 32 bit)

Check symlinks/shortcuts Symlinks/shortcuts are successfully
created
Symlinks/shortcuts point to the correct
location

Check web ports Ports are listening/responding

Check permissions Sites have correct permissions directories/
files have the right permissions

Check the binaries Binaries are versioned correctly

Check the files & directories File and directory listing matches the
expected list (or matches the QA/UAT
environments)

PATTERN #7: KISS: KEEP IT SIMPLE, SYSADMINS!

PATTERN: Keep your deployment architecture as simple as possible.

ANTI-PATTERN: Overdoing the symlinks/shortcuts and leaving too many
old files/directories lying around on the production system.

When we get overly familiar with our systems and applications, it becomes
easy to see past their complexity. But to an outsider the complexity can be
blinding. As production sysadmins we tend to know the Live environment
better than we know the backs of our own hands, but wouldn’t it be better if
we just didn’t have to know all this useless complexity?

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

Browse our collection of over 150 Free Cheat Sheets
Upcoming Refcardz

Free PDF

6 Deployment Automation Patterns

DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome

refcardz@dzone.com

Sponsorship Opportunities

sales@dzone.com

Copyright © 2012 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“"DZone is a developer's dream",” says PC Magazine.

Troubleshooting complex production environments can be very frustrating.
When the live site is down and you’re trying to diagnose the problem,
finding symlinks more than 2 deep should be a crime punishable by law! It’s
overly complex and usually 100% avoidable. In deployment scripts, using
variables where variables are not needed just makes it harder to follow.
Likewise, writing conditionals for every edge case you can think of is not
practical in a deploy script.

Here’s an example of pointless variables in a deploy script:

Lines 12 and 14 might have seemed a good idea when writing the script,
indeed they may look sensible, but in fact their values are only used once
in the remainder of the script (lines 13 and 15), so we might as well simply
replace this with:

So we’ve reduced the size of our sample by 50% just by rationalizing our
use of variables! This might not look like much in isolation, but it could
mean the difference between troubleshooting a 1000 line deploy script and
a 500 line script.

Symbolic links can be useful and frustrating in equal measure. They act
as shortcuts to other locations on Unix based systems, so for instance
we can have a link to Java in our application’s home directory, and our
application’s configuration file need only point to its home directory to find
the java installation – the symlink will do the rest. However, using symlinks
can quickly get out of hand, and we can end up chasing around the system
just to find our java installation (for instance). When you’re troubleshooting
a production issue, this can be unimaginably frustrating!

java > /usr/bin/java_latest > /usr/bin/java/jdk1.6 > /usr/bin/
java/jdk1.6.0_24/bin > GO TO JAIL!

Keep your production system as clean as possible. When doing
deployments, don’t leave any remnants of the last build on the file system.
Either deploy to a clean directory and use symlinks to point to the “latest”
version, or delete (or move) the existing files in their entirety. Trying to do
complex partial upgrades is often more trouble than it is worth.

Not only the production system needs to be kept as simple as possible
– the deployment process needs to be simple as well.

Make your deployment processes even easier by putting a front end on
your deployment scripts, eliminating room for human error. It’s becoming
increasingly popular to use CI tools to trigger production deployments;
or you could easily write a simple interface to drive your deploy scripts.
Alternatively there are numerous tools available (open source as well as
enterprise) which can be used to drive your deployments.

For the last 10 years James Betteley
has been a keen believer in the benefits
of automation. When he’s not busy in
his day job as a Change and Release
Manager, you might find James
blogging or speaking at various DevOps
and Continuous Delivery talks around
London.

The authors introduce state-of-the-art techniques,
including automated infrastructure management
and data migration, and the use of virtualization. For
each, they review key issues, identify best
practices, and demonstrate how to mitigate risks.
Whether you’re a developer, systems administrator,
tester, or manager, this book will help your
organization move from idea to release faster than
ever—so you can deliver value to your business
rapidly and reliably.

			 BUY HERE

A B O U T T H E A U T H O R R E C O M M E N D E D B O O K

PHP 5.4
HTTP
MongoDB
Opa

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://devopsnet.com/
http://www.amazon.com/dp/0321601912?tag=contindelive-20
http://devopsnet.com/
http://www.amazon.com/Jenkins-Definitive-John-Ferguson-Smart/dp/1449305350

