

DZone, Inc. | www.dzone.com

By Mike Keith

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 J

PA
 2

.0

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#127

CONTENTS INCLUDE:
n	 Whats New in JPA 2.0
n	 JDBC Properties
n	 Access Mode
n	 Mappings
n	 Shared Cache
n	 Additional API and more...

Getting Started with
 JPA 2.0

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://answerhub.com

DZone, Inc. | www.dzone.com

G
et

 M
o

re
 R

ef
ca

rd
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#166
P

at
te

rn
s

o
f

M
o

d
u

la
r

A
rc

h
it

ec
tu

re

By Kirk Knoernschild

Patterns of Modular Architecture

ABOUT THE MODULARITY PATTERNS

Module frameworks are gaining traction on the Java platform. Though
modularity isn’t a new concept, it promises to change the way we
develop software applications. You’ll only be able to realize the benefits
of modularity if you understand how to design more modular software
systems.

The modularity patterns lay the foundation necessary to incorporate
modular design thinking into your development initiatives. No module
framework is necessary to use these patterns, and you already have many
of the tools you need to design modular software. This refcard provides a
quick reference to the 18 modularity patterns discussed in the book Java
Application Architecture: Modularity Patterns with Examples Using OSGi.

The modularity patterns are not specific to the Java platform. They can
be applied on any platform by treating the unit of release and deployment
as the module. Each pattern, except for base patterns, includes a diagram
description, and implementation guidance.

Base Patterns: Fundamental modular design concepts upon which several
other patterns exist.

Dependency Patterns: Used to help you manage dependencies between
modules.

Usability Patterns: Used to help you design modules that are easy to use.

Extensibility Patterns: Used to help you design flexible modules that you
can extend with new functionality.

Utility Patterns: Used as tools to aid modular development.

Logical vs. Modular Design
Almost all well-known principles and patterns that aid software design
address logical design. Identifying the methods of a class, relationships
between classes, and the system package structure are all logical design
issues. The vast majority of development teams spend their time dealing
with logical design issues. A flexible logical design eases maintenance and
increases extensibility.

Logical design is just one piece of the software design and architecture
challenge, however. The other is modular design, which focuses on
the physical entities and the relationships between them. Identifying
the entities containing your logical design constructs and managing
dependencies between the units of deployment are examples of modular
design. Without modular design, you may not realize the benefits you
expect from your logical design. The modularity patterns help you:

•	 Design	software	that	is	extensible,	reusable,	maintainable,	and	
adaptable.

•	 Design	modular	software	today,	in	anticipation	of	future	platform	
support	for	modularity.

•	 Break	large	software	systems	into	a	flexible	composite	of	
collaborating	modules.

•	 Understand	where	to	place	your	architectural	focus

•	 Migrate	large-scale	monolithic	applications	to	applications	with	
a	modular	architecture.

The Two Facets of Modularity
There are two facets of modularity.

The runtime model focuses on how to manage software systems at
runtime. A module system, such as OSGi, is required to take advantage of
the runtime model.

The development model deals with how developers create modular
software. The development model can be broken down into two sub-
categories. The programming model is how you interact with a module
framework to take advantage of the runtime benefits of modularity. The
design paradigm is the set of patterns you apply to design great modules.

A module framework gives you runtime support and a programming
model for modularity. But a module framework won’t help you design
great software modules. The patterns in this refcard address the design
paradigm and help you design modular software.

Module Defined
A software module is a deployable, manageable, natively reusable,
composable, stateless unit of software that provides a concise interface
to consumers. On the Java platform, a module is a JAR file, as depicted in
the diagram. The patterns in this refcard help you design modular software
and realize the benefits of modularity.

CONTENTS INCLUDE:

❱	Base Patterns

❱	Dependency Patterns

❱	Usability Patterns

❱	Extensibility Patterns

❱	Utility Patterns

❱	Hot Tips... and More!

http://www.dzone.com
http://www.refcardz.com
http://answerhub.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com

2 Patterns of Modular Architecture

DZone, Inc. | www.dzone.com

BASE PATTERNS

The base patterns are the fundamental elements upon which the other
patterns exist. They establish the conscientious thought process that
goes into designing systems with a modular architecture. They focus on
modules as the unit of reuse, dependency management, and cohesion.

Manage Relationships
Design module relationships.

Description
A relationship between two modules exists when a class within one module
imports at least a single class within another module. In other words:

Hot
Tip

If changing the contents of a module, M2, may impact the contents
of another module, M1, we can say that M1 has a physical
dependency on M2.

Excessive dependencies will make your modules more difficult to maintain,
reuse, and test.

Implementation Guidance
•	 Avoid	modules	with	excessive	incoming	and	outgoing	

dependencies.

•	 Modules	with	many	incoming	dependencies	should	be	stable.	
That	is,	they	should	change	infrequently

•	 Use	module	dependencies	as	a	system	of	checks	and	balances.	
For	instance,	enforce	relationships	between	software	layers	using	
modularity	(see	Physical	Layers).

Module Reuse
Emphasize reusability at the module level.

Description
An oft-cited benefit of object-oriented development is reuse. Unfortunately,
objects (or classes) are not an adequate reuse construct. The Reuse
Release Equivalence Principle explains why.

Hot
Tip

The unit of reuse is the unit of release.

Modules are a unit of release and are, therefore, an excellent candidate as
the unit of reuse.

Implementation Guidance
•	 Separate	horizontal	modules	(those	that	span	business	domains)	

from	vertical	modules	(those	specific	to	a	business	domain).

•	 Module	granularity	and	weight	play	a	significant	role	in	reuse.	
Carefully	consider	each.

•	 Fine-grained	modules	with	external	configuration	come	with	a	
higher	likelihood	of	reuse.	But	beware,	these	modules	may	be	
more	difficult	to	use.

Cohesive Modules
Module behavior should serve a singular purpose.

Description
Cohesion is a measure of how closely related and focused the various
responsibilities of a module are. Modules that lack cohesion are more
difficult to maintain.

Implementation Guidance
•	 Pay	careful	attention	to	how	you	allocate	classes	to	their	

respective	modules.

•	 Classes	changing	at	the	same	rate	and	typically	reused	together	
belong	in	the	same	module.

•	 Classes	changing	at	different	rates	and	typically	not	reused	
together	belong	in	separate	modules.

DEPENDENCY PATTERNS

The dependency patterns focus on managing the relationships between
modules. They provide guidance on managing coupling that increase the
likelihood of module reuse.

Acyclic Relationships
Module relationships must be acyclic.

Description
Cyclic relationships complicate the module structure. Apply the following
rule to identify cyclic relationships.

Hot
Tip

If beginning with module A, you can follow the dependency
relationships between the set of modules that A is directly or
indirectly dependent upon and you find any dependency on module
A within that set, then a cyclic dependency exists between your
module structure.

You should avoid cyclic dependencies.

Implementation Guidance
•	 Escalation	breaks	cycles	by	moving	the	cause	of	the	cyclic	

dependency	to	a	managing	module	at	a	higher	level.

•	 Demotion	breaks	cycles	by	moving	the	cause	of	the	cyclic	
dependency	to	a	lower-level	module.

•	 Callbacks	break	a	cycle	by	defining	an	abstraction	that	is	injected	
into	the	dependent	module.	This	implementation	resembles	the	
Observer	[GOF]	pattern.

Levelize Modules
Module relationships should be levelized.

Description
Levelization is similar to layering, but is a finer-grained way to manage
acyclic relationships between modules. With levelization, a single layer may
contain multiple module levels. To levelize modules, do the following:

Assign external modules level 0. Modules dependent only on level 0
modules are assigned level 1. Modules dependent on level 1 are assigned
level 2. Modules dependent on level n are assigned level n + 1.

http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

3 Patterns of Modular Architecture

DZone, Inc. | www.dzone.com

Implementation Guidance
•	 Levels	are	more	granular	than	the	layers	in	your	system.	Use	

levels	to	manage	relationships	within	layers.

•	 Levelization	demands	module	relationships	be	acyclic.	You	
cannot	levelize	a	module	structure	with	cycles.

•	 A	strict	levelization	scheme,	where	modules	are	dependent	
only	on	the	level	directly	beneath	it,	is	conceptually	ideal	but	
pragmatically	difficult.

Physical Layers
Module relationships should not violate the conceptual layers.

Description
Layering a system helps ease maintenance and testability of the
application. Common layers include presentation (i.e., user interface),
domain (i.e., business), and data access. Any conceptually layered software
system can be broken down into modules that correspond to these
conceptual layers. Physical layers helps increase reusability because each
layer is a deployable unit.

Implementation Guidance
•	 Begin	by	creating	a	single	coarse-grained	module	for	each	layer.

•	 Enforce	the	layers	using	Levelize	Build.

•	 Break	out	each	layer	into	more	cohesive	modules	and	use	
Levelize	Modules	to	understand	and	manage	the	relationships	
within	the	layer.

•	 It’s	fine	if	modules	within	a	layer	have	relationships	between	
them.	These	modules	will	be	at	different	levels.

Container Independence
Modules should be independent of the runtime container.

Description
Heavyweight modules are dependent upon a specific runtime environment
and are difficult to reuse across contexts. Environmental dependencies also
negatively affect your ability to test modules. Modules independent of the
runtime container are more likely reused, and are more easily maintained
and testable.

Implementation Guidance
•	 Avoid	importing	container-dependent	packages	in	your	module’s	

code.

•	 Use	External	Configuration	to	configure	a	module	so	that	it	can	
operate	in	different	runtime	environments.

•	 Use	dependency	injection	to	abstract	container	dependencies.

Independent Deployment
Modules should be independently deployable units.

Description
The less outgoing dependencies a module has, the easier the module
is to reuse. A module with no outgoing dependencies is independently
deployable and can be reused without the worry of identifying which
additional modules might be necessary. Lower-level modules inherently
have fewer outgoing dependencies and increase the opportunity for reuse.

Implementation Guidance
•	 Not	all	modules	can	be	independently	deployable.	Some	module	

dependencies	are	always	necessary.

•	 In	addition	to	reducing	outgoing	dependencies,	container	
dependencies	must	also	be	minimized	for	those	modules	that	are	
independently	deployable.

•	 Highly	cohesive	modules	are	easier	to	make	independently	
deployable	units.

USABILITY PATTERNS

We want modules that other developers find easy to interact with. The
usability patterns help design modules that are easy to understand and
use.

Published Interface
Make a module’s published interface well known.

Description
Modules should encapsulate implementation details so that other modules
don’t need to understand the implementation to use the module. A
module’s published interface exposes the capabilities you want to make
available to other developers.

Hot
Tip

A published interface consists of the public methods within the
public classes within the “exported” packages that other modules
are able to invoke.

In standard Java, there is no way to explicitly state which packages a
module exports, so it’s difficult to enforce a published interface. Module
frameworks, such as OSGi, shine in this situation.

http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

4 Patterns of Modular Architecture

DZone, Inc. | www.dzone.com

Implementation Guidance
•	 In	standard	Java,	document	the	published	interface	you	expect	

other	clients	to	invoke.

•	 In	standard	Java,	expose	the	published	interface	via	abstractions	
and	discourage	other	developers	from	using	the	concrete	
classes.

•	 Module	frameworks,	such	as	OSGi,	allow	you	to	export	packages	
and	allow	you	to	more	easily	enforce	a	published	interface.

External Configuration
Modules should be externally configurable.

Description
Module initialization typically requires configuring the module to its
environmental context. Externalizing the configuration decreases context
dependencies and allows you to use the module across a wider array of
environments. External configuration increases a module’s reuse, but
makes it more difficult to use because developers must understand how to
configure the module.

Implementation Guidance
•	 Use	External	Configuration	to	eliminate	a	module’s	environmental	

dependencies.	

•	 Include	a	configuration	file	within	the	module	that	defines	a	
default	configuration,	making	the	module	easier	to	use.

•	 Remain	cognizant	of	the	tradeoff	between	increased	reuse	
and	decreased	usability.		In	other	words,	maximizing	reuse	
complicates	use.	

Default Implementation
Provide modules with a default implementation.

Description
To maximize reuse, a module must be flexible enough so that it can
function in a variety of different operating environments. Yet, making a
module easier to use leads us to incorporate more functionality into a
module so developers are required to do less when using the module. A
default implementation with well-defined extension points helps address
this tension.

Implementation Guidance
•	 When	defining	a	Default	Implementation,	depend	upon	the	

abstract	elements	of	a	module	(see	Abstract	Modules	or	Separate	
Abstractions).

•	 Include	a	default	configuration	in	the	module,	but	make	the	
module	externally	configurable,	as	well.

•	 Always	create	a	Test	Module	to	test	the	default	implementation.

Module Façade
Create a façade serving as a coarse-grained entry point to another fine-
grained module’s underlying implementation.

Description
Fine-grained and lightweight modules are inherently more reusable.
But fine-grained modules are also typically dependent on several other
modules. A Module Façade defines a higher level API that coordinates the
work of a set of fine-grained modules. The façade emphasizes ease of use
while the finer-grained modules emphasize reuse.

Implementation Guidance
•	 Don’t	emphasize	reuse	of	the	façade.	Use	it	to	wire	together	and	

configure	multiple	fine-grained	modules.

•	 Place	context	and	environmental	dependencies	in	the	façade.

•	 Use	the	façade	as	an	entry	point	for	your	integration	tests.

EXTENSIBILITY PATTERNS

We want software that is easy to extend without modifying the existing
codebase. We also want to deploy this new functionality without affecting
other areas of the system. The extensibility patterns help us achieve this
goal.

Abstract Modules
Depend upon the abstract elements of a module.

Description
Depending on the abstract elements of a module gives you greater
opportunities to extend the system by defining new modules with classes
that implement or extend the abstraction. Any clients of the module also
have the ability to define their own implementations and to plug them into
the module.

Implementation Guidance
•	 Use	an	Implementation	Factory	to	create	a	module’s	underlying	

implementation.	

•	 Use	Abstract	Modules	when	you	have	many	incoming	module	
dependencies	and	you	want	the	flexibility	to	swap	out	underlying	
implementations.

•	 Strive	to	make	the	abstraction	within	a	module	as	stable	as	
possible.	That	is,	avoid	changes	since	it	will	have	many	many	
other	modules	that	are	dependent	upon	it.

http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

5 Patterns of Modular Architecture

DZone, Inc. | www.dzone.com

Implementation Factory
Use factories to create a module’s implementation classes.

Description
Any module whose classes depend upon the abstract elements of another
module should avoid referencing any implementation classes. Doing so
will compromise your module design. Consider the following rule.

Hot
Tip

If a class depending on an abstraction must be changed in order to
instantiate a new implementation of the abstraction, the design is
flawed.

Furthermore, if a module must be changed to accommodate the
instantiation, the module design is compromised.

Implementation Guidance

•	 The	factory	must	be	separated	from	the	module	containing	the	
class	instances	it	creates	as	well	as	the	module	dependent	upon	
the	abstractions.

•	 Externalize	the	creation	of	a	module’s	implementation	to	a	
configuration	file.

•	 Consider	using	a	dependency	injection	framework	like	Spring,	
OSGi	Blueprint,	or	OSGi	Declarative	Services.	These	will	serve	as	
your	factory	to	wire	together	the	appropriate	implementations	at	
runtime.

Separate Abstractions
Place abstractions and the classes that implement them in separate
modules.

Description
Separating abstractions from their implementation offers the greatest
flexibility to provide new implementations that completely replace existing
implementations. With Separate Abstractions, you can define new behavior
and plug it into your system without affecting existing system modules.
Separate Abstractions can be used to develop a plug-in architecture. As a
general guideline, apply the following rule.

Hot
Tip

Keep the abstraction closer to the classes that depend upon it and
further from the classes that extend or implement it.

Implementation Guidance

•	 If	all	classes	that	depend	upon	an	abstraction	live	in	a	single	
module,	then	place	the	classes	and	the	abstraction	in	the	same	
module.

•	 If	the	classes	dependent	upon	an	abstraction	live	in	separate	
modules,	place	the	abstraction	in	a	module	separate	from	the	
classes	that	depend	upon	it.

•	 Separating	abstractions	lends	the	ultimate	flexibility	to	extend	
your	system,	but	also	increases	its	complexity.

UTILITY PATTERNS

The utility patterns are additional tools and techniques that aid modular
development. They help you enforce your modular design and ensure
quality.

Colocate Exceptions
Exceptions should be close to the class or interface that throws them.

Description
Allocation of exceptions to modules has implications on module
dependencies. Putting exceptions close to the classes that catch them
creates a dependency from the module that throws the exception to
the module containing the exception. Because invoking a method can
introduce a module dependency, exceptions should be in the same module
as the class containing the method that throws the exception.

Implementation Guidance
•	 Throw	the	exception	on	the	interface	or	abstract	class	you’re	

bound	to	and	place	the	exception	in	the	same	module	as	the	
interface	or	abstract	class.

•	 If	abstractions	across	several	modules	throw	the	same	exception,	
demote	the	exception	to	a	completely	separate	module	at	a	lower	
level.

Levelize Build
Execute the build in accordance with module levelization.

http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

Browse our collection of over 150 Free Cheat Sheets
Upcoming Refcardz

Free PDF

6 Patterns of Modular Architecture

Version 1.0

$7
.9

5

RECOMMENDED BOOKABOUT THE AUTHOR

Description

Enforcing module relationships is difficult. Though conceptually you may
believe you have an acyclic module structure and fully comprehend the
module relationships, a single build target with everything on the classpath
allows undesirable cycles and dependencies to creep in. A levelized build
helps you enforce your module dependencies. Any dependencies that
violate your defined module structure will result in a build failure.

Implementation Guidance
•	 Avoid	a	full	classpath	build,	where	all	classes	are	built	using	a	

single	compile	target.

•	 Define	separate	build	targets	for	modules	in	different	levels.	Level	
1	modules	can	be	built	with	only	external	level	0	modules.		At	
higher	levels,	include	only	the	modules	from	lower	levels	that	are	
required	for	a	successful	build.

•	 Defining	new	module	dependencies	will	require	modifying	the	
build	for	that	module.		This	is	not	necessarily	undesirable.

Test Module
Each module should have a corresponding test module.

Description

Test modules contain all of the tests for the classes in a specific module.
They allow you to test a module’s underlying implementation. A Test
Module may contain unit tests that test a module’s classes, as well as
integration tests that test the entire module’s functionality.

Implementation Guidance
•	 Depending	on	Abstract	Modules	makes	it	easier	to	define	mocks	

and	stubs	for	testing	a	module	independently.	

•	 For	larger	test	suites,	or	situations	where	performance	is	
paramount,	separate	different	types	of	tests	(i.e.,	unit	tests,	
integration	tests,	performance	tests,	etc.)	out	into	separate	test	
modules.

•	 Ideally,	you’ll	only	include	the	test	module	and	the	module	under	
test	in	the	classpath	when	executing	the	tests.	Pragmatically,	
some	modules	may	require	other	dependent	modules.

Kirk is a software developer with a passion for building
great software. He takes a keen interest in design,
architecture, application development platforms, agile
development, and the IT industry in general, especially
as it relates to software development. His recent book,
“Java Application Architecture: Modularity Patterns
with Examples Using OSGi” was published in 2012 and
presents 18 patterns that help you design modular
software systems.

This isn’t the first book on Java application
architecture. No doubt it won’t be the last. But rest
assured, this title is different. The way we develop
Java applications is about to change, and this title
explores the new way of Java application architecture.

 BUY HERE

HTTP
MongoDB
Cypher
Apache HTTPD

DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome

refcardz@dzone.com

Sponsorship Opportunities

sales@dzone.com

Copyright © 2012 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“"DZone is a developer's dream",” says PC Magazine.

http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://modularity.kirkk.com/
http://modularity.kirkk.com/
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com

