
The MongoDB Solution for Big Data

TokuMX™ is an open source, high-performance distribution of MongoDB that has
dramatically improved performance and operational efficiency compared to
basic MongoDB. TokuMX™ is a drop-in replacement for MongoDB, and offers:

20x Faster Indexing
90% Compression
70% Less I/0

@tokutekFacebook /Tokutek

To learn more about our open source solution or to download TokuMX™, visit us online
at www.Tokutek.com or email us: contact@tokutek.com

VS MONGODB AT SCALE

http://tokutek.com

© DZone, Inc. | DZone.com

MongoDB
By Vlad Mihalcea

» Configuration Options

» Using the Shell

» Diagnosing What’s Happening

» Quick Rules

» Query Operators

» And more...C
O

N
T

E
N

T
S

Ja
v

a
 E

n
t

E
r

p
r

is
E

 E
d

it
io

n
 7

MongoDB is a document-oriented database that is
easy to use from almost any language. As of August
2014, MongoDB is by far the most popular NoSQL
database according to http://db-engines.com/en/
ranking. This Refcard is intended to help you get the
most out of MongoDB and assumes that you already
know the basics If you’re just starting out, try these
resources:

•	For	installation	notes,	see	http://docs.mongodb.
org/manual/installation/

•	For	a	quick	tutorial	on	basic	operations,	see	
http://docs.mongodb.org/manual/tutorial/
getting-started/

Configuration options

sEtting options

Startup options for MongoDB can be set on the
command	line	or	in	a	configuration	file.	The	syntax	is	
slightly	different	between	the	two.	Here	are	the	three	
types of options:

Command-LinE Config fiLE

--dbpath /path/to/db dbpath=/path/to/db

--auth auth=true

-vvv vvv=true

Run mongod --help	for	a	full	list	of	options.	Here	are	
some of the most useful:

option dEsCription

--config /path/to/config Specifies	config	file	where	other	
options are set.

--dbpath /path/to/data Path to data directory.

--port 27017 Port for MongoDB to listen on.

--logpath /path/to/file.log
Where the log is stored. This is
a	path	to	the	exact	file,	not	a	
directory.

--logappend

On restart, appends to (does not
truncate)	the	existing	log	file.	
Always use this when using the
--logpath option.

--fork Forks	the	mongod	as	a	daemon	
process.

--auth Enables authentication on a single
server.

--keyFile /path/to/key.txt
Enables authentication on replica
sets and sharding. Takes a path to a
shared secret key

--nohttpinterface Turns	off	HTTP	interface.

--bind_ip address Only allows connections from the
specified	network	interface.

Ge
t M

or
e

Re
fc

ar
dz

! V
is

it
Re

fc
ar

dz
.co

m
BrougHt to You BY:

171
m

o
n

g
o

d
B

sEEing options

If you started mongod with	a	bunch	of	options	six	
months ago, how can you see which options you
used? The shell has a helper:

> db.serverCmdLineOpts()
{ “argv” : [“./mongod”, “--port”, “30000”], “parsed” : { },
“ok” : 1 }

The parsed	field	is	a	list	of	arguments	read	from	a	
config	file.

using tHE sHELL

sHELL HELp

There are a number of functions that give you a little
help if you forget a command:

> // basic help
> help
 db.help() help on db methods
 db.mycoll.help() help on collection methods
 sh.help() sharding helpers
 rs.help() replica set helpers
 help admin administrative help
 help connect connecting to a db help
 ...

Note that there are separate help functions for
databases, collections, replica sets, sharding,
administration, and more. Although not listed
explicitly,	there	is	also	help	for	cursors:

> // list common cursor functions
> db.foo.find().help()

You can use these functions and helpers as built-in
cheat sheets.

Seeing Function Definitions
If you don’t understand what a function is doing, you

http://www.dzone.com?refcardz
http://docs.mongodb.org/manual/installation/
http://docs.mongodb.org/manual/installation/
http://docs.mongodb.org/manual/tutorial/getting-started/
http://docs.mongodb.org/manual/tutorial/getting-started/
http://www.refcardz.com
http://tokutek.com
http://tokutek.com

© DZone, Inc. | DZone.com

2 Mongodb

can run it without the parentheses in the shell to see its
source code:

> // run the function
> db.serverCmdLineOpts()
{ “argv” : [“./mongod”], “parsed” : { }, “ok” : 1 }
> // see its source
> db.serverCmdLineOpts

This	can	be	helpful	for	seeing	what	arguments	it	expects	
or what errors it can throw, as well as how to run it from
another language.

Using edit
The shell has limited multi-line support, so it can be
difficult	to	program	in.	The	shell	helper	edit	makes	this	
easier,	opening	up	a	text	editor	and	allowing	you	to	edit	
variables	from	there.	For	example:

> x = function() { /* some function we’re going to fill in */ }
> edit x
<opens emacs with the contents of x>

Modify	the	variable	in	your	editor,	then	save	and	exit.	The	
variable will be set in the shell.

Either the EDITOR environment variable or a MongoDB
shell variable EDITOR must be set to use edit. You can
set it in the MongoDB shell as follows:

> EDITOR=”/usr/bin/emacs”

edit is not available from JavaScript scripts, only in the
interactive shell.

.mongorc.js
If a .mongorc.js	file	exists	in	your	home	directory,	it	will	
automatically be run on shell startup. Use it to initialize
any helper functions you use regularly and remove
functions you don’t want to accidentally use.

For	example,	if	you	would	prefer	to	not	have	
dropDatabase() available by default, you could add the
following lines to your .mongorc.js	file:

DB.prototype.dropDatabase = function() {
 print(“No dropping DBs!”);
}
db.dropDatabase = DB.prototype.dropDatabase;

The	example	above	will	change	the	dropDatabase()
helper to only print a message, and not to drop
databases.

Note	that	this	technique	should	not	be	used	for	security	
because a determined user can still drop a database
without	the	helper.	However,	removing	dangerous	admin	
commands	can	help	prevent	fat-fingering.		

A couple of suggestions for helpers you may want to
remove from .mongorc.js are:

• DB.prototype.shutdownServer

• DBCollection.prototype.drop

• DBCollection.prototype.ensureIndex

• DBCollection.prototype.reIndex

• DBCollection.prototype.dropIndexes

CHanging tHE prompt

The shell prompt can be customized by setting the
prompt variable to a function that returns a string:

prompt = function() {
 try {
 db.getLastError();
 }
 catch (e) {
 print(e);
 }
 return (new Date())+”$ “;
}

If you set prompt,	it	will	be	executed	each	time	the	
prompt	is	drawn	(thus,	the	example	above	would	give	
you the time the last operation completed).

Try to include the db.getLastError() function call in your
prompt. This is included in the default prompt and takes
care of server reconnection and returning errors from
writes.

Also,	always	put	any	code	that	could	throw	an	exception	
in a try/catch block. It’s annoying to have your prompt
turn	into	an	exception!

diagnosing WHat’s HappEning

viEWing and KiLLing opErations

You can see current operations with the currentOp
function:

> db.currentOp()
{
 “inprog” : [
 {
 “opid” : 123,
 “active” : false,
 “locktype” : “write”,
 “waitingForLock” : false,
 “secs_running” : 200,
 “op” : “query”,
 “ns” : “foo.bar”,
 “query” : {
 }
 ...
 },
 ...
]
}

Using the opid	field	from	above,	you	can	kill	operations:

> db.killOp(123)

Not all operations can be killed or will be killed
immediately. In general, operations that are waiting for a
lock	cannot	be	killed	until	they	acquire	the	lock.

indEx usagE

Use explain()	to	see	which	index	MongoDB	is	using	for	a	
query.

http://www.dzone.com?refcardz
http://tokutek.com

© DZone, Inc. | DZone.com

3 Mongodb

> db.foo.find(criteria).explain()
{
 “cursor” : “BasicCursor”,
 “isMultiKey” : false,
 “n” : 2,
 “nscannedObjects” : 2,
 “nscanned” : 2,
 “nscannedObjectsAllPlans” : 2,
 “nscannedAllPlans” : 2,
 “scanAndOrder” : false,
 “indexOnly” : false,
 “nYields” : 0,
 “nChunkSkips” : 0,
 “millis” : 0,
 “indexBounds” : {

 },
 “server” : “ubuntu:27017”
}

There	are	several	important	fields	in	the	output	of	
explain():

•	n: the number of results returned.

•	nscanned:	the	number	of	index	entries	read.

•	nscannedObjects: the number of docs referred by
the	index.

•	indexOnly:	if	the	query	never	had	to	touch	the	
collection itself.

•	nYields:	the	number	of	times	this	query	has	released	
the read lock and waited for other operations to go.

•	indexBounds: when	an	index	is	used,	this	shows	the	
index	scan	ranges.

tYpEs of Cursors

A BasicCursor	means	that	no	index	was	used.	A	
BtreeCursor	means	a	normal	index	was	used.	Parallel	
cursors	are	used	by	sharding	and	geospatial	indexes	use	
their own special cursors.

Hinting

Use hint() to	force	a	particular	index	to	be	used	for	a	
query:

> db.foo.find().hint({x:1})

sYstEm profiLing

You	can	turn	on	system	profiling	to	see	operations	
currently happening on a database. There is a
performance	penalty	to	profiling,	but	it	can	help	isolate	
slow	queries.

> db.setProfilingLevel(2) // profile all operations
> db.setProfilingLevel(1) // profile operations that take longer
than 100ms
> db.setProfilingLevel(1, 500) // profile operations that take
longer than 500ms
> db.setProfilingLevel(0) // turn off profiling
> db.getProfilingLevel(1) // see current profiling setting

Profile	entries	are	stored	in	a	capped	collection	called	
system.profile	in	the	database	in	which	profiling	was	
enabled.		Profiling	can	be	turned	on	and	off	for	each	
database.

rEpLiCa sEts

To	find	replication	lag,	connect	to	a	secondary	and	run	

this function:

> db.printReplicationStatus()
configured oplog size: 2000MB
log length start to end: 23091secs (6.4hrs)
oplog first event time: Fri Aug 10 2012 04:33:03 GMT+0200
(CEST)
oplog last event time: Mon Aug 20 2012 10:56:51 GMT+0200
(CEST)
now: Mon Aug 20 2012 10:56:51 GMT+0200
(CEST)

To see a member’s view of the entire set, connect to it
and run:

> rs.status()

This command will show you what it thinks the state and
status of the other members are.

Running rs.status() on a secondary will show you who
the secondary is syncing from in the (poorly named)
syncingTo	field.		

sHarding

To see your cluster’s metadata (shards, databases,
chunks, etc.), run the following function:

> db.printShardingStatus()
> db.printShardingStatus(true) // show all chunks

You can also connect to the mongos and see data about
your shards, databases, collections, or chunks by using
“use	config”	and	then	querying	the	relevant	collections.

> use config
switched to db config
> show collections
chunks
databases
lockpings
locks
mongos
settings
shards
system.indexes
version

Always connect to a mongos to get sharding
information. Never connect directly to a config server.
Never directly write to a config server. Always use
sharding commands and helpers.

After maintenance, sometimes mongos processes
that were not actually performing the maintenance
will not have an updated version of the config. Either
bouncing these servers or running the flushRouterConfig
command	is	generally	a	quick	fix	to	this	issue.

> use admin
> db.runCommand({flushRouterConfig:1})

Often this problem will manifest as setShardVersion
failed errors.

Don’t worry about setShardVersion errors in the logs,
but they should not trickle up to your application (you
shouldn’t get the errors from a driver unless the mongos
it’s connecting to cannot reach any config servers).

http://www.dzone.com?refcardz
http://tokutek.com

© DZone, Inc. | DZone.com

4 Mongodb

mongo monitoring sErviCE (mms)

MMS is a free, easily-setup way to monitor MongoDB. To
use it, create an account at http://mms.10gen.com.

See http://mms.10gen.com/help for more
documentation.

QuiCK ruLEs

dataBasEs

Database	names	cannot	contain	“.”,	“$”,	or	“\0”	(the	
null character). Names can only contain characters that
can	be	used	on	your	filesystem	as	filenames.	Admin,
config, and local are reserved database names (you can
store your own data in them, but you should never drop
them).

CoLLECtions

Collection	names	cannot	contain	“$”	or	“\0”.	Names	
prefixed	with	“system.”	are	reserved	by	MongoDB	and	
cannot be dropped (even if you created the collection).
Dots are often used for organization in collection names,
but they have no semantic importance. A collection
named	“che.se”	has	no	more	relation	to	a	collection	
named	“che”	than	one	named	“cheese”	does.

fiELd namEs

Field	names	cannot	contain	“.”	nor	“\0”.		Fields	should	
only	contain	“$”	when	they	are	database	references.

indEx options

background
Builds	indexes	in	the	background,	
while other connections can read
and write.

unique Every value for this key must be
distinct.

sparse

Non-existent	values	are	not	
indexed.	Very	handy	for	indexing	
unique	fields	that	some	documents	
might not have.

expireAfterSeconds
Takes a number of seconds
and	makes	this	a	“time	to	live”	
collection.

dropDups

When	creating	unique	indexes,	
drops duplicate values instead of
erroring out. Note that this will
delete documents with duplicate
values!

QuErY format

Queries are generally of the form:

{key : {$op : value}}

For	example:

{age : {$gte : 18}}

There	are	three	exceptions	to	this	rule:	$and,	$or,	and	
$nor,	which	are	all	top-level:

{$or : [{age: {$gte : 18}}, {age : {$lt : 18},
parentalConsent:true}}]}

updatE format

Updates are always of the form:

{key : {$mod : value}}

For	example:

{age : {$inc : 1}}

QuErY opErators :
:Matches
x:Does not match

opErator ExampLE QuErY ExampLE doCs

$gt,	$gte,	$lt,	$lte,	
$ne {numSold	:	{$lt:3}}

{numSold:	1}

x	{numSold:	“hello”}

x{x	:	1}	

$in,	$nin {age	:	{$in	:	[10,	14,	21]}}
{age:	21}

{age:	[9,	10,	11]}

x{age:	9}

$all {hand	:	{$all	:	
[“10”,”J”,”Q”,”K”,”A”]}}

{hand:	[“7”,	“8”,	
“9”,	“10”,	“J”,	“Q”,	“K”,	
“A”]}

x{hand:[“J”,”Q”,”K”]}

$not {name	:	{$not	:	/jon/i}}
{name:	“Jon”}

x{name:	“John”}

$mod {age	:	{$mod	:	[10,	0]}}
	{age:	50}

x{age:	42}

$exists {phone:	{$exists:	true}}

{phone: “555-555-
5555”}

x{phones:	[“555-
555-5555”,	“1-800-
555-5555”]}

$type* {age	:	{$type	:	2}}
{age	:	“42”}

x{age	:	42}

$size {“top-three”:{$size:3}}

{“top-three”:[“gold
”,”silver”,”bronze”]}

x{“top-three”:[“blue	
ribbon”]}

http://www.dzone.com?refcardz
http://mms.10gen.com
http://mms.10gen.com/help
http://tokutek.com

© DZone, Inc. | DZone.com

5 Mongodb

$regex

{role:	/admin.*/i}
{role:	{$regex:’admin.*’,	
$options:	‘i’
}}

{role:
“administrator”}

{role:	“Admin”}

x{role:	“user”}

See http://www.mongodb.org/display/DOCS/
Advanced+Queries for a full list of types.

updatE modifiErs

modifiEr start doC ExampLE mod End doC

$set {x:”foo”} {$set:{x:[1,2,3]}} {x:[1,2,3]}

$unset {x:”foo”} {$unset:{x:true}} {}

$inc {countdown:5} {$inc:{countdown:-
1}}	 {countdown:4}

$push,	
$pushAll {votes:[-1,-1,1]} {$push:{votes:-1}} {votes:[-1,-1,1,-1}}

$pull,	
$pullAll

{blacklist::[“ip1”,
”ip2”,	“ip3”]}

{$pull:{blacklist:	
“ip2”}}

{blacklist:”ip1”,
”ip3”}	

$pop {queue:[“1pm”,”	
3pm”,”8pm”]}	 {$pop:{queue:-1}} {queue:[“3pm”,

“8pm”]}	

$addToSet,	
$each {ints:[0,1,3,4]} {$addToSet:{ints:{$

$each:[1,2,3]}}} {ints:[0,1,2,3,4]}

$rename {nmae:”sam”} {$rename:{nmae:	
”name”}} {name:”sam”}

$bit {permission:6} {$bit:{permissions
:{or:1}}} {permission:7}

aggrEgation pipELinE opErators

The aggregation framework can be used to
perform	everything	from	simple	queries	to	complex	
aggregations.

To use the aggregation framework, pass the aggregate()
function a pipeline of aggregation stages:

> db.collection.aggregate({$match:{x:1}},
... {$limit:10},
... {$group:{_id : “$age”}})

 A list of available stages:
opErator dEsCription

{$project : projection} Includes,	exclude,s	renames,	and	
munges	fields.

{$match : match} Queries, takes an argument identical
to	that	passed	to	find().

{$limit : num} Limits results to num.

{$skip : skip} Skips num results.

{$sort : sort} Sorts	results	by	the	given	fields.

{$group : group} Groups results using the
expressions	given	(see	table	below).

{$unwind : field} Explodes	an	embedded	array	into	
its own top-level documents.

{$redact : expression} Removes sensitive information from
the current aggregation result.

{$out	:	output-collection} Writes the aggregation result
documents	to	a	specified	collection.

To	refer	to	a	field,	use	the	syntax	$fieldName.	For	
example,	this	projection	would	return	the	existing	“time”	
field	with	a	new	name,	“time	since	epoch”:

{$project: {“time since epoch”: “$time”}}

$project and $group	can	both	take	expressions,	which	
can use this $fieldName	syntax	as	shown	below:

ExprEssion op ExampLE dEsCription

$add : [“$age”, 1] Adds	1	to	the	age	field.

$divide : [“$sum”, “$count”] Divides	the	sum	field	by	count.

$mod : [“$sum”, “$count”] The remainder of dividing sum by
count.

$multiply : [“$mph”, 24, 365] Multiplies	mph	by	24*365

$subtract : [“$price”,
“$discount”] Subtracts discount from price.

$strcasecmp : [“ZZ”, “$name”] 1 if name is less than ZZ, 0 if name is
ZZ, -1 if name is greater than ZZ.

$substr : [“$phone”, 0, 3] Gets	the	area	code	(first	three	
characters) of phone.

$toLower : “$str” Converts str to all lowercase.

$toUpper : “$str” Converts str to all uppercase.

$ifNull : [“$mightExist”,
 $add : [“$doesExist”, 1]]

If	mightExist	is	not	null,	returns	
mightExist.	Otherwise	returns	the	
result	of	the	second	expression.

$cond : [exp1, exp2, exp3] If	exp1	evalutes	to	true,	return	exp2,	
otherwise	return	expr3.

$let: { vars, in } Binds variables to be used in
subexpressions.

$map : {
 input : [1, 2],
 as : “v”
 in : { $multiply: [
“$$v”, 2] }
}

Map calls the provided sub-
expression	once	for	each	element	in	
an array, and constructs a new array
from	the	results	(e.g.	[2,	4]).

$literal Treats	“$”	as	literal	instead	of	
evaluating	the	subexpression.

$size: { [1, 2 , 4] } Returns the size of the provided
array	(e.g.	3)

maKing BaCKups

The best way to make a backup is to make a copy of the
database	files	while	they	are	in	a	consistent	state	(i.e.,	
not in the middle of being read from/to).

1.Use	the	fsync+lock	command.	This	flushes	all	in-
flight	writes	to			disk	and	prevents	new	ones.
> db.fsyncLock()
2.Copy	data	files	to	a	new	location.
3.Use	the	unlock	command	to	unlock	the	database.
> db.fsyncUnlock()

To	restore	from	this	backup,	copy	the	files	to	the	correct	
server’s dbpath and start the mongod.

If you have a filesystem that does filesystem snapshots
and your journal is on the same volume and you haven’t

http://www.dzone.com?refcardz
http://www.mongodb.org/display/DOCS/
http://tokutek.com

© DZone, Inc. | DZone.com

5 Mongodb

done anything stripy with RAID, you can take a snapshot
without locking. In this case, when you restore, the
journal	will	replay	operations	to	make	the	data	files	
consistent.

Mongodump is only for backup in special cases. If you
decide	to	use	it	anyway,	don’t	fsync+lock	first.

rEpLiCa sEt maintEnanCE

KEEping mEmBErs from BEing ELECtEd

To permanently stop a member from being elected,
change its priority to 0:

> var config = rs.config()
> config.members[2].priority = 0
> rs.reconfig(config)

To prevent a secondary from being elected temporarily,
connect to it and issue the freeze command:

> rs.freeze(10*60) // # of seconds to not become primary

This can be handy if you don’t want to change priorities
permanently but need to do maintenance on the
primary.

dEmoting a mEmBEr

If a member is currently primary and you don’t want it to
be, use stepDown:

> rs.stepDown(10*60) // # of seconds to not try to become
primary again

starting a mEmBEr as a stand-aLonE sErvEr

For	maintenance,	often	it	is	desirable	to	start	up	a	
secondary and be able to do writes on it (e.g., for
building	indexes).	To	accomplish	this,	you	can	start	up	a	
secondary as a stand-alone mongod temporarily.

If the secondary was originally started with the following
arguments:

$ mongod --dbpath /data/db --replSet setName --port 30000

Shut it down cleanly and restart it with:

$ mongod --dbpath /data/db --port 30001

Note that the dbpath does not change, but the port
does and the replSet option is removed (all other
options can remain the same). This mongod will come
up as a stand-alone server. The rest of the replica set will
be	looking	for	a	member	on	port	30000,	not	30001,	so	
it	will	just	appear	to	be	“down”	to	the	rest	of	the	set.	

When	you	are	finished	with	maintenance,	restart	the	
server with the original arguments.

usEr managEmEnt

CHECK CurrEnt usEr priviLEgEs

> db.runCommand(
... {
... usersInfo:”manager”,
... showPrivileges:true
... }
...)

CrEatE a supEradmin

> use admin
switched to db admin

> db.createUser(
... {
... user: “superAdmin”,
... pwd: “sa”,
... roles:
... [
... {
... role: “userAdminAnyDatabase”,
... db: “admin”
... }
...]
... }
...)

CrEatE an administrator for a givEn dataBasE

> use sensors
switched to db sensors
> db.createUser(
... {
... user: “sensorsUserAdmin”,
... pwd: “password”,
... roles:
... [
... {
... role: “userAdmin”,
... db: “sensors”
... }
...]
... }
...)

viEW usEr roLEs

> use sensors
switched to db sensors
> db.getUser(“sensorsUserAdmin”)
{
 “_id” : “sensors.sensorsUserAdmin”,
 “user” : “sensorsUserAdmin”,
 “db” : “sensors”,
 “roles” : [
 {
 “role” : “userAdmin”,
 “db” : “sensors”
 }
]

sHoW roLE priviLEgEs

> db.getRole(“userAdmin”, { showPrivileges: true })

grant a roLE

> db.grantRolesToUser(
... “sensorsUserAdmin”,
... [
... { role: “read”, db: “admin” }
...]
...)

rEvoKE a roLE

> db.revokeRolesFromUser(
... “sensorsUserAdmin”,
... [
... { role: “userAdmin”, db: “sensors” }
...]
...)

> db.grantRolesToUser(
... “sensorsUserAdmin”,
... [
... { role: “read”, db: “admin” }
...]
...)

http://www.dzone.com?refcardz
http://tokutek.com

© DZone, Inc. | DZone.com

8 Mongodb

mongodB rEstriCtions

1.	The	maximum	document	size	is	16	megabytes.

2.	Namespaces	must	be	shorter	than	123	bytes.

3.	Each	namespace	file	must	be	no	larger	than	2047	
megabytes.

4.	The	index	entry	total	size	must	be	less	than	1024	
bytes.

5.	A	collection	can	have	up	to	64	indexes.

6.	The	index	name	(namespace	included)	cannot	be	
longer than 125 chars.

7.	A	replica	set	can	have	at	most	12	members.

8.	A	shard	key	can	have	at	most	512	bytes.

9.	A	shard	key	is	always	immutable.

10.	MongoDB	non-indexed	field	sort	will	return	results	
only	if	this	operation	doesn’t	use	more	than	32	
megabytes of memory.

11. Aggregation pipeline stages are limited to 100
megabytes	of	RAM.	When	the	limit	is	exceeded,	
an	error	is	thrown.	“allowDiskUse”	option	allows	
aggregation	pipeline	stages	to	use	temporary	files	for	
processing.

12. A bulk operation is limited to 1000 operations.

13.	A	database	name	is	case-sensitive	and	may	have	up	
to 64 characters.

14.	Collections	names	cannot	contain:	$,	null	or	start	
with	the	“system.”	prefix.

Field names cannot contain: $, null or . (dot)

additionaL rEsourCEs

•Download	MongoDB	at	http://www.mongodb.org/
downloads

•Documentation	is	available	at																																	
http://docs.mongodb.org

•Download	TokuMX	distribution	at
 http://www.tokutek.com//tokumx_downloads/

•See	the	roadmap	and	file	bugs	and	request	features	
at http://jira.mongodb.org

•Ask	questions	on	the	mailing	list:	http://groups.
google.com/group/mongodb-user

AboUT THE AUTHoR RECoMMEndEd booK

Vlad Mihalcea is a software architect, passionate about
concurrency and data reliability. He’s the creator of FlexyPool
(https://github.com/vladmihalcea/flexy-pool), a reactive
connection pooling utility. He’s been involved in promoting
both SQL and NoSQL solutions and he blogs at:
http://vladmihalcea.com

How does MongoDB help you manage a huMONGOus
amount of data collected through your web application?
With this authoritative introduction, you’ll learn
the many advantages of using documentoriented
databases, and discover why MongoDB is a reliable,
high-performance system that allows for almost infinite
horizontal scalability.

bUY noW

Browse our ColleCtion of 250+ FREE REsoURCEs, inCluding:
REsEARCH gUidEs: Unbiased insight from leading tech experts
REFCARdz: Library of 200+ reference cards covering the latest tech topics
CoMMUniTiEs: Share links, author articles, and engage with other tech experts

Join noW
DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513
888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com
Sponsorship Opportunities
sales@dzone.com

Copyright © 2014 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0 $7.95

DZone communities deliver over 6 million pages each month to more than 3.3 million software
developers, architects and decision makers. DZone offers something for everyone, including
news, tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

http://www.dzone.com?refcardz
http://mongodb.org/downloads
http://mongodb.org/downloads
http://docs.mongodb.org
http://tokutek.com//tokumx_downloads/
http://jira.mongodb.org
http://groups.google.com/group/mongodb-user
http://groups.google.com/group/mongodb-user
https://github.com/vladmihalcea/flexy-pool
http://vladmihalcea.com
http://amazon.com/MongoDB-Definitive-Guide-Kristina-Chodorow/dp/1449344682/ref=sr_1_1?ie=UTF8&qid=1407950008&sr=8-1&keywords=mongodb
http://www.dzone.com/user/register/
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com

