

DZone, Inc. | www.dzone.com

By Mike Keith

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 J

PA
 2

.0

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#127

CONTENTS INCLUDE:
n	 Whats New in JPA 2.0
n	 JDBC Properties
n	 Access Mode
n	 Mappings
n	 Shared Cache
n	 Additional API and more...

Getting Started with
 JPA 2.0

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.jfrog.com/home/v_artifactorycloud_overview
http://www.jfrog.com/home/v_artifactorypro_overview
https://bintray.com/

DZone, Inc. | www.dzone.com

G
et

 M
o

re
 R

ef
ca

rd
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#181
B

in
ar

y
R

ep
o

si
to

ry
 M

an
ag

em
en

t

By: Carlos Sanchez

INTRODUCTION

Software development produces two distinct kinds of artifacts: (1) source
code, and (2) binary artifacts. This Refcard assumes basic familiarity with
source repository management, and is intended to help you design and
configure a binary repository, optimize it for various workflows, and fit it
smoothly into your software development lifecycle.

INTRODUCTION: REPOSITORY REQUIREMENTS

An artifact is the output of any step in the development process. Many
artifacts result from builds, but other types are crucial as well. Common
artifact types include:

•	 ZIP or tarball files
•	 RPM or DEB packages (Linux)
•	 JAR, WAR, and EAR packages (Java)
•	 Gems (Ruby)
•	 Python packages
•	 DLLs (Windows)
•	 Source packages
•	 Documentation packages

The two artifact super-types
The various types listed above cluster into two groups: (1) source and (2)
binary. And while it is possible to use a source repository to store binary
artifacts, some crucial differences between these two artifact super-types
make this solution non-ideal.

What source repositories are for
Source repositories are designed simply to manage source code. A well-
built source repository therefore boasts a feature-set tailored to source
code management, e.g.: diffing versions, tracking deleted or overwritten
files, branching, and tagging.

Source repositories deal with relatively small files. Large files (like binaries)
degrade performance of the entire repository.

DVCS (Distributed Version Control Systems), like Git, streamline distributed
development by cloning the full source repository to each developer’s
machine. Developers don’t usually mess with the binaries directly, so
cloning binaries stored in a source repository could waste tremendous
bandwidth.

What binary repositories are for
Binary Repositories are to binaries what source repositories or VCS
(Version Control Systems) are to sources. Where source repositories deal
with relatively small code files that change constantly and are often cloned
with abandon, binary repositories manage a completely different workflow.

Binary artifacts are often orders of magnitude larger than source files.

From the point of view of the developer (though not the designer), binary
packages don’t need to be diffed.

Except very rarely (e.g. snapshots and nightly builds), binary artifacts are
not deleted or overwritten.

Binary artifacts usually need to store lots of metadata (package name,
version, license, etc.).

When to use binary dependencies
Many static dependencies could be stored in source form, but this practice
begets three problems: (1) it complicates the build process unnecessarily;
(2) it encourages project-specific branching, which in many cases (e.g.
shared libraries) might affect totally separate projects; (3) reproducing a
build from source requires building all the dependencies, which may or
may not reproduce the original build. Therefore, when you use cross-
project dependencies that don’t need to change quickly, it’s better to store
the dependencies as binaries, in a distinct binary repo.

Briefly, then, the basic pragmatic differences between the needs of source
management and the needs of binary artifact management are:

Source code management Binary artifact management

Diffing, branching, tagging None of these (within the
development process proper)

Frequent deletes/overwrites Rare deletes/overwrites

Small files Large files

Minimal file-specific metadata Lots of file-specific metadata

Changing, project-specific
dependencies

Relatively static, cross-project
dependencies

Table 1: Needs of source vs. binary repositories

ELEMENT 1: REPOSITORY DESIGN

By itself, the term ‘binary repository’ doesn’t say much about actual
implementation. Strictly speaking, a ‘binary repository’ can be anything
from a simple directory of files served via HTTP to a full-fledged,
feature-rich repository management server that offers scads of features
specifically tailored to the needs of binary repositories in particular.
Therefore, you’ll need to make quite a few design decisions up front

Segments and permissions
Divide each repository into groups (or software providers), each of which
(a) manages a specific part of the repository namespace and (b) has
appropriate permissions for its particular part. The goal is to avoid clashes
between projects – an especially tricky problem when some of the shared
artifacts are binary dependencies. Groups can have multiple projects, and
each project can have multiple versions.

CONTENTS INCLUDE:

❱ Repository Requirements

❱ Repository Design

❱ Hosting & Management

❱ Security & Maintenance

❱ Binary Releases

❱ Popular Repository Managers... and More!

Binary Repository Management
Patterns for Performance, Security, and Traceability

...

Brought to you by:

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.jfrog.com/home/
http://www.jfrog.com/

2 Binary Repository Management

DZone, Inc. | www.dzone.com

Best practice: repository grouping
Repositories can multiply quickly, because multiple teams are using the
repository manager with different permissions and usage patterns, or even
because many third party repositories are being used.

In such cases, repository setup becomes extremely complex, with a
possibly long list of repositories to configure. To pare down the repository
list, the repository manager can define virtual repositories (or groups of
repositories) where every request to that group is served from any of the
repositories in the group:

all QA production

releases

third-party
artifacts

release
candidates

x

snapshots x x

Build and release schedule: nightly, continuous,
snapshot
Distinguish which binaries require nightly, continuous, or snapshot builds
and releases. (Some tools will do this for you – see feature matrix at the
end of this Refcard.) Because snapshot repositories are more resource-
intensive, use a snapshot binary repository only when binaries:

•	 are non-durable
•	 have slightly different semantics
•	 can be deleted
•	 are implemented at build time in the simplest way possible 	
	 (e.g., without source tagging and any other requirements of a 	
	 formal release)

Common build tools by platform
Some build tools will prove particularly helpful for binary repository
management. Apache Maven is the most popular Java build tool that uses
binary repositories (although it wasn’t the first – e.g. Debian packages).
Binary repositories are still quite common in the JVM world, especially with
Maven, but plenty of other tools are available for various platforms:

Platform Build tool w/binary repos

JVM Maven, Ivy, Maven Ant Tasks, Gradle

.NET NuGet

OSGi P2

Linux apt-get, Yum

ELEMENT 2: HOSTING AND MANAGEMENT

A binary repository is a hub for development teams across the whole
organization, centralizing the management of all the binary artifacts
generated and used by the organization. The inevitable resulting diversity
of binary artifact types, and their differing positions in the overall workflow,
is one major reason to use a dedicated binary repository manager, rather
than just a simple file server. But more focused functionality means more
decisions.

What a binary repository needs to store
Binary repositories store (1) files and (2) metadata; plus, for each of these,
both (a) releases and (b) nightly builds (based on retain policies). The ‘files’
set has a complicating subset: third-party artifacts need to be handled
differently (for combined legal and technical reasons).

In most cases it’s fair to assume that files will not change and deletions will
happen only for snapshots.

Common types of metadata
Selecting appropriate binary metadata can be tricky because many data-
points that source files already include (because these both code and
metadata are text) need to be specified separately from the binary files
themselves. Here are some common metadata types and their uses:

Metadata type Used for

Versions available Upgrading and downgrading
automatically

Dependencies Other artifacts the current artifact
depends on

Downstream dependencies Other artifacts that depend on the
current artifact

License Legal compliance

Build date and time Traceability

Documentation Contextual documentation in IDEs;
offline availability

Approval information Traceability

Metrics code coverage, rules compliance,
test results

User-created metadata Custom reports and processes

Managing multiple repositories
Even smaller organizations will probably need to host several binary
repositories, each designated by project, department, and permissions.
In this case a full-fledged repository manager, with permissions separate
from the file system, will prove especially useful.

Typically each project should include separate snapshot and release
repositories, with their desired set of permissions, and repositories for other
external projects used.

Metadata and artifact search
Source code is inherently searchable; binaries obviously are not, so you’ll
need to put a little effort into enabling search in your binary repository.
Here’s what and why:

Metadata search is absolutely essential. Consider the types of metadata
(and uses) listed above, and think of how useful a search feature would
be – for quickly locating dependencies, isolating problematic artifacts,
navigating a tangled web of cross-enterprise projects.

Metadata searches are especially crucial for collaborative development
across teams – since one team may very easily be using a binary built by
another team, and won’t be able to peek through the veil of the other team’s
code.

Artifact search abilities for tools like IDEs, can save hundreds of hours over
a period of several months. Most developers want to be able to find an
artifact, and immediately add it as a dependency, without leaving the IDE.
Some repositories expose search APIs (as any other modern web search),
others offer downloadable precalculated indexes.

Exposing binaries with APIs
Binary repositories should allow users to upload and download artifacts,
typically through HTTP/WebDav.

Users should also be able to query the metadata with REST APIs. A solid
metadata query API will let you do two things: (a) automate configuration,
and (b) integrate the repository with other tools, like continuous integration
servers. For example, a CI server will need to query the repository metadata
to see whether a new version of an artifact is available.

Caching external binaries
At some point, in some (perhaps most) projects, you’ll probably use third
party artifacts that are hosted in a repository external to your organization.
Network latency and bandwidth will affect development speed directly
– especially when your external artifacts are (gigantic) binaries – even
if your team is fully on-premise. Now imagine you need to work every
day with the latest build of several dependencies and each takes several
minutes to download – possibly several times a day. Now consider a long
chain of dependencies, and you’re immediately (and with no payoff on the
development side) in binary download dependency hell.

To skirt this time-sink, cache these files in your repository manager. The
cached binaries can be served rapidly to other machines on the same
network, after the initial request – either to human coders or directly to CI
servers themselves.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.jfrog.com/

3 Binary Repository Management

DZone, Inc. | www.dzone.com

Proxying external binaries
Further, external dependencies introduce an element of unnecessary
risk – simply because you can’t control access to them. To remove this
risk, configure your repo manager to proxy these files. Keep a copy in your
private repository; then dependency availability will be up to you. You can
also apply your own backup and availability policies, guaranteeing access
to the artifacts even if they disappear on the upstream repository.

The external repositories can be proxied (a) on demand or (b) mirrored.

Option 1: on-demand repository
In an on-demand proxy scenario, requests to the remote repositories
happen only the first time any developer requests an artifact that is not yet
cached in the proxy repository. Any further requests from other developers
will use the copy in the proxy repository:

Besides typical HTTP proxy features, a repository manager adds features
specific to binary repositories (backed by all the metadata and information
stored in the repositories). Consider the advantages of, for example, filtering
by group or artifact IDs or expiring unused artifacts to reduce the space
needed.

Option 2: mirrored repository
In a mirrored repository scenario, all changes are automatically
synchronized to the mirror. So even the first request for an artifact is always
resolved from the repository that is closest to you:

The simplest way to implement a mirrored repository is simply to use rsync
from the filesystem backing the repository.

Some repository managers offer more sophisticated, checksum-based
mirroring, implemented by using repository REST APIs.

To choose between on-demand and mirror repository proxying, use this
table:

Feature On-demand Mirror

First request for an
artifact is resolved
from

Remote repository Proxy repository

Space requirements Low (only used
artifacts are cached)

High (all artifacts are
cached)

Bandwidth
requirements (between
proxy and remote)

Lower in principle
(under low demand)
but potentially higher, if
many developers fetch
artifacts at once

Higher in principle
(all artifacts are
transferred) but
potentially lower
in practice, if many
developers fetch
artifacts at once

Supporting distributed teams
When teams that access the repositories are located in different locations
or distributed across the globe, it is also important to mirror the internal
repositories as well as the third party repos.

To do this, setup repository manager servers hierarchically. Run a server
in each location to (a) serve as mirror of the remote server and (b)
synchronize the repositories’ contents either on demand or (preferably)
mirrored.

Use a master server as a write-only instance. Let all the other servers
(distributed in different locations) proxy the master for local caching.

Artifact promotion
When an artifact is pushed to a repository it may not be the final place for it.
Imagine a workflow where a release candidate artifact needs to go through
integration testing and QA processes. Only artifacts that go through this
process should be available for other teams or clients.

A repository manager can enforce this workflow by setting different
permissions for each repository while letting only authorized users promote
or move the artifacts between repositories.

For instance, when releases are pushed to the release candidate repository,
set permissions to allow only the QA team to move artifacts from there
to the releases repository when their tests are done (either manually or
automatically). The production systems can then be configured to pull only
artifacts from the final releases repository, thus enforcing the completion of
the QA process.

ELEMENT 3: SECURITY & MAINTENANCE

Authentication & Authorization
Since the binary repository stores project-related binaries, the same
permissions enforced for the projects themselves (such as the source code
access permissions) should be used for protecting the resulting binaries.
In some cases, access to the binaries may be granted without granting
access to the source – and this can be managed at the repository level.

To simplify and centralize user management, configure your repository
manager to integrate with other organization systems such as LDAP or
single sign on servers.

Hot
Tip

As with source traceability, so with binary traceability. Trace
changes in the repository (such as which user uploaded an artifact
and when, or who is downloading artifacts) for audit purposes.

Purging policies
Although artifacts usually must be kept for a long time (the same as any
other product or distribution), there are some cases when we can benefit
from purging repository contents.

Snapshot repositories need to be purged from time to time to ensure a
reasonable disk usage—especially when using continuous integration
heavily, since CI can easily generate several builds per day. Usually,
snapshots can be purged when a new version is released, but that may be
changed to just keep the last n snapshots.

Some binary repository managers offer automatic purging procedures
based on defined policies (e.g. number of snapshots to retain).

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.jfrog.com/

4 Binary Repository Management

DZone, Inc. | www.dzone.com

Proxied repositories for third party artifacts can also be purged when the
artifacts are not being used by any release — for instance, for artifacts
used during a proof of concept that is discarded. In these cases it is a
good practice to separate the artifacts being used in production from the
artifacts used during development for trials or proof of concept.
(This can also be done during promotion: promote not only the built
artifacts, but also the dependencies.) This will considerably simplify
management downstream.

Managing Third Party Artifacts
Some organizations may have a policy about third party dependencies
because of licensing or approval processes. Enforce these policies in
your binary repository by preventing unauthorized publication to certain
repositories, while still not obstructing development.

Here’s a common example: third party artifacts need to be requested by a
developer and approved by a legal department. But development should
not be waiting on legal approval, since legal approval is required for only
for release binaries. Configure your repository manager to allow use of any
dependency during development.

To simplify the process, some repository managers (e.g. Artifactory) also
include automatic license discovery and management and integration with
license management software (e..g, BlackDuck Code Center)

High Availability
Using a repository manager to hold all your development dependencies
also means that your repository is a central piece to your infrastructure: any
downtime means halting development, with all the consequences.

Using a repository mirror, we can have a copy of the repository ready to
be swapped if the main one fails, or we can use a more complex strategy
depending on the specific repository manager used. A Network Attached
Storage (NAS) can be used for the artifacts’ backend and database
master-slave configuration for repository managers that use a RDBMS as
metadata backend.

Disaster Recovery
For the same reasons, the repository manager needs to be backed up and
the adequate recovery measures put in place, such as offsite backups of
configuration, artifacts, and metadata. Consider that the binary repository is
as important as your source code repository: it holds all your releases and
dependencies that may no longer be available in other locations.

ELEMENT 4: BINARY RELEASES

Continuous Integration and Binary Repositories

Continuous Builds
As part of the development lifecycle, source code is continuously being built
into binary artifacts. As part of your continuous integration process, those
artifacts should get pushed to the repository from the CI server. Don’t push
from developer’s boxes, as all sorts of factors may affect the build (e.g.
software used in the developer machine, specific configuration options,
environment variables, etc.). Push like this:

Releases
Within releases, there are two alternatives, depending on what you consider
a release: (a) a release can be a special build; or (b) a release be just a
promotion of a nightly build.

Release as a special build by (1) changing the version number to a release
(i.e. 1.0), (2) tagging the sources, and (3) doing a new build. Maven offers
the release plug-in to assist on these steps, ensuring none of them are
forgotten and that the process can be automated (but functionality is
limited). CI servers may have some support too, like Artifactory’s Jenkins
release integration (which is more useful for special build releases, since
promoted snapshots are in the binary repository). Here’s how a special-
build release looks:

Release as a promotion of a nightly build involves (1) tagging the sources
for each build, (2) picking one of those builds, and (3) deciding that this
build should be the released one. This option involves a bit more discipline
(as each build should be ready to be released), but reduces the implications
and troubles of a scheduled release. It is also more in line with agile
methodologies.

That build can be promoted in the repository manager from one repository
to another (e.g., from snapshots to release candidates repositories), while
the artifact itself does not change.

Either way you will end up with a release candidate artifact in the repository.
This doesn’t need to be the final one, but just one step in the process.

Use this table to decide how to treat releases:

Special build Promotion

Initiated by: Source control REST API

Performed by: Build server Binary repository

Process: Change version
number to release (e.g.
1.0) and build again

Tag each build and
decide which will
become a release after
the fact (file doesn’t
change)

Tool support: Maven release plugin,
Artifactory's Jenkins
plugin…

Repository manager
servers

Trouble at release time: Increases with the
amount of time
between releases

Minimal, in line with
agile methodologies

Repository usage: Release is uploaded to
a different repository
than snapshots

Build is promoted
from one repository
to another, i.e., from
nightly builds to
release candidates

By having separate repositories with their own semantics and permissions
(based on the step within the lifecycle and target audience), we can model
and enforce a healthy development lifecycle:

Tighter Build Server Integration
Continuous integration servers can interact with the repositories as any
developer would, by getting artifacts from the repositories and pushing
builds there. But there are also advantages to a tighter integration:

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.jfrog.com/

5 Binary Repository Management

DZone, Inc. | www.dzone.com

CI action Reason

Delete local caches of the repository Dependencies must already be
present in the repository

Create new processes for each build Enforce environment variables

Prevent users from installing
packages by hand

Ensure that all dependencies are
defined

Since the CI server is a ‘single source of truth’ for builds, it can also be
used to generate the Bill of Materials to be stored with the artifacts in the
repository. Include the following metadata:

•	 User that triggered the build (manually or by committing to 	
	 SCM)
•	 Modules built
•	 Sources used (commit id, revision, branch)
•	 Dependencies used
•	 Environment variables
•	 Packages installed

All this information can prove useful later – for artifact scans or reports,
artifact audit and security checks, and, most importantly, build traceability.

REPOSITORY MANAGERS

Although, strictly speaking, a repository can be hosted simply by serving
a file directory over HTTP, specialized repository manager servers were
created to implement the practices proper to the best binary repository
management (discussed above).

An early project called Maven-Proxy implemented caching from Maven
central repositories—an in-demand feature at the time, when transfers from
the central Maven repository at iBiblio would take a long time. Since that
initial tool, there are now three major repository managers contending in
the space.

Artifactory
First released in mid-2006, JFrog Artifactory offered indexed searches,
security controls and web 2.0 UI. Artifactory’s development is user-needs
driven, and is primarily focused on enterprise features. JFrog offers an
Artifactory open source version, a commercial Artifactory Pro with extra
features and Artifactory Cloud, a SaaS solution.

Apache Archiva
Apache Archiva launched in November 2005. It was a simple framework on
top of some existing repository conversion tools within the Maven project.
Initial development focused on repository conversion, error reporting, and
indexing. In January of 2006, a web application was released that visualized
the information and incorporated the functionality from the unmaintained
Maven-Proxy project. Archiva became an Apache “top level project” in
March 2008.

Nexus
Sonatype Nexus is the continuation of the Proximity repository manager,
released in 2005. In 2007, Sonatype continued development as Nexus,
offering both an open-source version (Nexus OSS) and a commercial one
(Nexus PRO) with extra features.

Repository Manager Feature Matrix
Apache Archiva, Artifactory and Nexus share a good number of typical
features expected in a repository manager. They differ mostly on
enterprise-grade features (integration with other enterprise systems,
security management options, etc.),support of different repository types for
non-Maven artifacts, integration with CI servers, and licensing model. Most
of these features are included in the commercial versions of Artifactory and
Nexus.

This is a non-comprehensive list of features showing mainly the
differences between the three tools. For more details there is a wiki page in
continuous update at http://docs.codehaus.org/display/MAVENUSER/Mav
en+Repository+Manager+Feature+Matrix

Feature Apache
Archiva

JFrog
Artifactory

Sonatype
Nexus

License ASL LGPL 3 /
Commercial

EPL /
Commercial

Last release 1.4-M3
October 2012

3.0.0
April 2013

2.3.1
February 2013

Repositories

Maven 1 / 2

Ivy (Maven layout
only)

 (Maven
layout only)

Gradle (Maven layout
only)

(Maven layout
only)

NuGet X (pro only) (pro only)

Yum X (pro only) X

P2 X (pro only) (pro only)

Repository
Storage

File system Checksum-
based,
filesystem or DB

File system

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://docs.codehaus.org/display/MAVENUSER/Maven+Repository+Manager+Feature+Matrix.
http://docs.codehaus.org/display/MAVENUSER/Maven+Repository+Manager+Feature+Matrix.
http://www.jfrog.com/

Browse our collection of over 150 Free Cheat Sheets
Upcoming Refcardz

Free PDF

6 Binary Repository Management

DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome

refcardz@dzone.com

Sponsorship Opportunities

sales@dzone.com

Copyright © 2013 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“"DZone is a developer's dream",” says PC Magazine.

Feature Apache
Archiva

JFrog
Artifactory

Sonatype
Nexus

Metadata

User attached
custom
metadata

Searchable
custom
metadata

X (pro only) (pro only)

Schema-less
metadata

X X

Attach metadata
as part of
deployment

X (pro only) (pro only)

Build-related
metadata

X (extended in
pro)

X

Continuous
Integration
server metadata

X (pro only) X

Artifact management

Snapshots purge

Unused proxy
artifacts purge

X

Staging releases (pro only

Feature Apache
Archiva

JFrog
Artifactory

Sonatype
Nexus

CI Server plugins

Jenkins-CI X X

Hudson-CI X X

JetBrains
TeamCity

X X

Atlassian
Bamboo

X X

Security

LDAP
authentication

LDAP
authorization

X (pro only) (pro only)

Single Sign On X Atlassian Crowd,
SAML, user
plugins (pro
only)

Atlassian Crowd
(pro only)

License
vulnerabilities
governance

X BlackDuck,
lightweight (pro
only)

X

Custom user plugins

Deploy plug-
ins without
recompilation

Plugin dynamic
DSL

X Groovy DSL X

Agile ALM is a guide for Java developers who
want to integrate flexible agile practices and
lightweight tooling along all phases of the software
development process. The book introduces a new
vision for managing change in requirements and
process more efficiently and flexibly. It synthesizes
technical and functional elements to provide a
comprehensive approach to software development.

		 Buy Here

Carlos Sanchez @csanchez is Co-Founder & Architect of
MaestroDev (http://maestrodev.com), a company building
a DevOps Orchestration engine for Continuous Delivery,
Agile development, DevOps, and Cloud Federation. Highly
committed to open source, he is a member of the Apache
Software Foundation among other groups, has contributed
to a variety of projects, like Apache Maven, Continuum,
Archiva, Spring Security, or Fog, and regularly speaks at
conferences around the world.

A B O U T T H E A U T H O R R E C O M M E N D E D B O O K

C++
Cypher
Clean Code
Subversion

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://manning.com/huettermann/
https://twitter.com/csanchez
http://www.maestrodev.com/
http://manning.com/huettermann/
http://www.jfrog.com/

