

DZone, Inc. | www.dzone.com

By Mike Keith

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 J

PA
 2

.0

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#127

CONTENTS INCLUDE:
n	 Whats New in JPA 2.0
n	 JDBC Properties
n	 Access Mode
n	 Mappings
n	 Shared Cache
n	 Additional API and more...

Getting Started with
 JPA 2.0

iPad

Collect, Manage and
Share All the Answers
Your Team Needs

> Q&A Software for Enterprise Knowledge Sharing

> Mobile-friendly Responsive Design

> Easy to Customize with Themes and Plugins

> Integrates with Your SSO and IT Infrastructure

> Choose Cloud-based or On-premise Hosting

The Enterprise Q&A Platform

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.couchbase.com/download
http://answerhub.com/landingpage
http://answerhub.com/request-demo/
http://answerhub.com/pricing
http://answerhub.com/

DZone, Inc. | www.dzone.com

G
et

 M
o

re
 R

ef
ca

rd
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#184
C

o
re

 S
p

ri
n

g
 D

at
a

By: Oliver Gierke

ABOUT THE SPRING DATA PROJECT

The Spring Data project is part of the ecosystem surrounding the Spring
Framework and constitutes an umbrella project for advanced data access
related topics. It contains modules to support traditional relational data
stores (based on plain JDBC or JPA), NoSQL ones (like MongoDB, Neo4j
or Redis), and big data technologies like Apache Hadoop. The core
mission of the project is to provide a familiar and consistent Spring-based
programming model for various data access technologies while retaining
store-specific features and capabilities.

General Themes
Infrastructure Configuration Support
A core theme of all the Spring Data projects is support for configuring
resources to access the underlying technology. This support is
implemented using XML namespaces and support classes for Spring
JavaConfig allowing you to easily set up access to a Mongo database, an
embedded Neo4j instance, and the like. Also, integration with core Spring
functionality like JMX is provided, meaning that some stores will expose
statistics through their native API, which will be exposed to JMX via Spring
Data.

Object Mapping Framework
Most of the NoSQL Java APIs do not provide support to map domain
objects onto the stores’ data model (e.g., documents in MongoDB, or
nodes and relationships for Neo4j). So, when working with the native Java
drivers, you would usually have to write a significant amount of code to
map data onto the domain objects of your application when reading, and
vice versa on writing. Thus, a core part of the Spring Data project is a
mapping and conversion API that allows obtaining metadata about domain
classes to be persisted and enables the conversion of arbitrary domain
objects into store-specific data types.

Template APIs
On top of the object mapping API, we’ll find opinionated APIs in the form
of template pattern implementations already well-known from Spring’s
JdbcTemplate, JmsTemplate, etc. Thus, there is a RedisTemplate, a
MongoTemplate, and so on. These templates offer helper methods that
allow you to execute commonly needed operations like persisting an object
with a single statement while automatically taking care of appropriate
resource management and exception translation. Beyond that, they expose
callback APIs that allow you to access the store-native APIs while still
getting exceptions translated and resources managed properly.

Repository Abstraction
These features already provide us with a toolbox to implement a data
access layer like we’re used to with traditional databases. The upcoming
sections will guide you through this functionality. To simplify the
development of a data access layer, Spring Data provides a repository
abstraction on top of the template implementation. This reduces the effort
to implement data access objects to writing a plain interface definition for
the most common scenarios like performing standard CRUD operations
as well as executing. This data access layer abstraction provides a layer
of portability for CRUD operations across the different stores but doesn’t
limit you to gain access to store specific features like geo-spatial queries
in MongoDB.

CONFIGURATION SUPPORT

At the very lowest level, Spring Data provides support to easily configure
infrastructure components and enable Spring Data features like the
repository support. The individual modules provide this support through
a Spring XML namespace and–where reasonable–the JavaConfig
equivalents implemented as @Enable… annotations.

JPA

XML element Description

<jpa:repositories /> Enables Spring Data repositories support for
repository interfaces underneath the package
configured in the base-package attribute.
JavaConfig equivalent is @EnableJpaRepositories.

<jpa:auditing /> Enables transparent auditing of JPA
managed entities. Note that this requires the
AuditingEntityListener applied to the entity (either
globally through a declaration in orm.xml or through
@EntityListener on the entity class).

MongoDB
For Spring Data MongoDB XML namespace elements not mentioning a
dedicated @Enable annotation alternative, you usually declare an @Bean-
annotated method and use the plain Java APIs of the classes that would
have otherwise been set up by the XML element. Alternatively, you can use
the JavaConfig base class AbstractMongoConfiguration that Spring Data
MongoDB ships for convenience.

XML element Description

<mongo:db-factory /> One stop shop to set up a Mongo
instance pointing to a particular database
instance. For advanced-use cases define
a <mongo:mongo /> extenally and refer to
it using a mongo-ref attribute.

<mongo:mongo /> Configures a Mongo instance.
Supports basic attributes like host,
port, write concern etc. Configure
more advanced options through the
nested <mongo:options /> element. In
JavaConfig simply declare an @Bean
method returning a Mongo instance.

<mongo:mapping-converter /> Configures a MappingMongoConverter.
Allows enabling scanning for entity
types on bootstrap (through base-
package attribute) and registering
custom converters through nested
<mongo:custom-converters /> element.

CONTENTS INCLUDE:

❱	About the Spring Data Project

❱	Configuration Support

❱	Object Mapping

❱	Template APIs

❱	Repositories

❱	Advanced Features... and more!

Core Spring Data

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
https://twitter.com/olivergierke/
mailto:info@cloudbees.com
http://answerhub.com/

2 Core Spring Data

DZone, Inc. | www.dzone.com

XML element Description

<mongo:repositories /> Enables Spring Data MongoDB
repositories support for repository
interfaces underneath the package
configured in the base-package
attribute. The JavaConfig equivalent is @
EnableMongoRepositories.

<mongo:auditing /> Enables transparent auditing of MongoDB
persisted domain objects.

<mongo:jmx /> Enables exposing MongoDB statistics
and configuration as JMX MBeans.

Neo4j
For Spring Data Neo4j XML namespace elements not mentioning a
dedicated @Enable annotation alternative, you usually declare an @Bean-
annotated method and use the plain Java APIs of the classes that would
have been set up by the XML element otherwise. Alternatively, you can use
the JavaConfig base class Neo4jConfiguration that Spring Data Neo4j ships
for convenience.

XML element Description

<neo4j:config /> Configures connection to the Neo4j data store and
entity types to be scanned for on bootstrap.

<neo4j:repositories /> Enables Spring Data Neo4j repositories
support for repository interfaces underneath
the package configured in the base-package
attribute. The JavaConfig equivalent is @
EnableNeo4jRepositories.

<neo4j:auditing /> Enables transparent auditing of Neo4j mapped
entities.

OBJECT MAPPING

If you have been working with JPA you are already familiar with annotation
based mapping of classes onto relational database tables. When working
with NoSQL stores you need similar means to configure how your classes
are mapped onto MongoDB documents or Neo4j nodes and relationships.

JPA
Here's what a simple JPA-mapped Customer class could look like:

@Entity
public class Customer {

 @Id @GeneratedValue
 private Long id;
 private String firstname, lastname;

 @Column(unique = true)
 private EmailAddress emailAddress;

 @OneToMany(cascade = CascadeType.ALL, orphanRemoval = true)
 @JoinColumn(name = “customer_id”)
 private Set<Address> addresses = new HashSet<Address>();

 …
}

As the JPA persistence provider is taking care of the object-relational
mapping, Spring Data JPA supports all JPA mapping annotations and
essentially does not deal with the mapping at all.

MongoDB
To persist the same Customer type into MongoDB you would use the
Spring Data mapping annotations as shown below:

@Document
public class Customer {

 @Id
 private BigInteger id;
 private String firstname, lastname;

 @Field(“email”)
 @Indexed(unique = true)
 private EmailAddress emailAddress;
 private Set<Address> addresses = new HashSet<Address>();

 …
}

Spring Data MongoDB Mapping Annotations

Annotation Description

@Id (optional) Determines the identifier property of
a class. If not explicitly used, properties named
id or _id will be considered IDs.

@Document (optional) Marks a class as to be stored as
document. Will only be used to component
scan for document classes to build mapping
metadata on application context startup.

@DBRef Defines an object to be stored in a separate
collection instead of being embedded.

@Transient Excludes a property from being persisted.

@Indexed Defines an index to be created for the property
annotated.

@CompoundIndex Defines a compound index to be created.

@GeoSpatialIndexed Defines a geo-spatial index to be created for
the given property. Property type needs to be
double[] or Point.

@PersistenceConstructor (optional) Selects one of multiple constructors
to be used for object instantiation on read
operations. For disambiguation purposes only.

@Value (optional) Allows customization of the value
to be used for a constructor parameter during
object construction. Refer to the just read
DBObject through #root.

@Field (optional) Allows customization of the field
name to be used and the field ordering inside
the resulting document.

Neo4j
The same Customer entity could also be persisted to a Neo4j data store
using Spring Data mapping annotations is shown below:

@NodeEntity
public class Customer {

 @GraphId
 private Long id;
 private String firstName, lastName;

 @Indexed(unique = true)
 private String emailAddress;

 @RelatedTo(type = “ADDRESS”)
 private Set<Address> addresses = new HashSet<Address>();

 …
}

Spring Data Neo4j Mapping Annotations

Annotation Description

@GraphId Determines the identifier property of a class.

@Transient Excludes a property from being persisted.

@NodeEntity Declares an entity class to be backed by a node.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

3 Core Spring Data

DZone, Inc. | www.dzone.com

Annotation Description

@RelationshipEntity Declares an entity class to be backed by a
relationship.

@StartNode / @
EndNode

To be used in an entity declared as @
RelationshipEntity. Defines the property to capture
the start or end node of a relationship.

@RelatedTo / @
RelatedToVia

Annotation for entity fields that relate to other
entities via relationships.

@Indexed Configures indexing to be applied for the annotated
property.

TEMPLATE APIS

Developers are likely familiar with the various template pattern
implementations available in the core Spring framework, like JdbcTemplate
and JmsTemplate. The Spring Data projects extend the usage of this
pattern for stores that do not provide a dedicated object mapping data
access API already, like MongoDB and Neo4j. The Spring Data template
classes have 3 major responsibilities:

1. Transparent integration of the object-to-store mapping.
2. Resource management. Reliably acquiring and releasing connections,

in the case of exceptions being thrown.
3. Exception translation. The templates automatically convert the

persistence technology specific exceptions being thrown into Spring’s
DataAccessException hierarchy to prevent the persistence technology
from leaking into client code.

The template implementations usually expose three different groups of
methods:

1. Standard use-case methods like findOne(…) and findAll(…) taking, for
example, query and the type of object to be retrieved.

2. Store specific functionality like createCollection(…) or geoNear(…) for
MongoDB, or createNode(…) or traverse(…) in the case of Neo4j.

3. Low-level methods (usually called execute(…)) accepting callback
interfaces to give you access to the store’s native API but still taking
care of resource management and exception translation.

These implementations provide a solid foundation to consistently
implement data access layers for different stores and exposing the
individual stores features.

REPOSITORIES

Even with a great API to build upon, implementing repositories involves
a lot of repetitive boilerplate code. The Spring Data modules ship with an
interface based programming model to help developers reduce the amount
of code written to the minimum possible.

Quickstart
Working with the repository abstraction generally follows the following
pattern:

1. Create interface annotated with @RepositoryDefinition or extending
one of Spring Data’s base repository interfaces

2. Add query methods and customize as needed
3. Potentially add custom implementation if necessary

To create a repository for one of the Customer domain classes listed above
you’d simply declare an interface extending e.g. the Repository marker
interface and add basic query methods to it.

interface CustomerRepository extends Repository<Customer, Long> {

 Customer findByEmailAddress(EmailAddress email);

 List<Customer> findByAddressCity(String city);

 Page<Customer> findByLastnameLike(String lastname, Pageable
pageable);
}

The Query Derivation Mechanism
A sole declaration of a query method will cause the Spring Data repository
infrastructure to parse the method name into a store-specific query. The
method names just shown consist of a prefix (terminated with the word
by), a property reference (direct, as in EmailAddress, or referring to nested
properties as in AddressCity) possibly augmented by a keyword that
defines how the parameters handed into the method are bound to the
property reference similar to frameworks like Grails.

The following table lists all keywords available for all the stores that
generally support the repository abstraction:

Logical keyword Keyword expressions

AFTER After, IsAfter (date types only)

BEFORE Before, IsBefore (date types only)

BETWEEN Between, IsBetween (date and numeric
types only)

CONTAINING Containing, IsContaining, Contains (String
or collection types only)

ENDING_WITH EndingWith, IsEndingWith, EndsWith (String
types only)

EXISTS Exists

FALSE False (boolean properties only)

GREATER_THAN GreaterThan, IsGreaterThan (comparable
types only)

GREATER_THAN_EQUALS GreaterThanEqual, IsGreaterThanEqual
(compüarable types only)

IN In, IsIn (expects collection or array
parameter)

IS Is, Equals, (or no keyword at all)

IS_NOT_NULL NotNull, IsNotNull

IS_NULL Null, IsNull

LESS_THAN LessThan, IsLessThan (comparable types)

LESS_THAN_GREATER LessThanGreater, IsLessThanGreater
(comparable types only)

LIKE Like, IsLike (expects the store-specific like
syntax, prefer CONTAINING, STARTS_WITH,
ENDS_WITH)

NOT Not, IsNot (boolean types only)

NOT_IN NotIn, IsNotIn (expects collection or array
parameter)

NOT_LIKE NotLike, IsNotLike

STARTING_WITH StartingWith, IsStartingWith, StartsWith
(String types only)

TRUE True, IsTrue (boolean types only)

The query derivation mechanism will create a query per method on
application bootstrap time, and will make sure it’s syntactically correct.
Depending on which store you bootstrap, the repository infrastructure for
the resulting query for findByAddressCity(…) would look as follows:

Store Keyword expressions

JPA Select c from Customer c where c.address.city = ?1

MongoDB { “address.city“ : ?0 }

Neo4j start address=node:Address(city={0})
match address<-[:LIVES_AT]-customer return customer

MongoDB-Specific Keywords
As MongoDB has support for geospatial functionality, we also expose
specific keywords to work with it transparently. Note that this requires to
the referenced properties to be annotated with @GeoSpatialIndexed.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

4 Core Spring Data

DZone, Inc. | www.dzone.com

Logical keyword Keyword expressions

NEAR Near, IsNear (expects parameter of type Point or
double[])

WITHIN Within, IsWithin (expects parameter of type Box,
Circle and an optional Distance)

REGEX Regex, MatchesRegex, Matches (String types only)

Customizing Query Execution
In case the query derivation mechanism falls short of your requirements,
the individual modules ship with an @Query annotation that allows you to
customize the query to be executed.

interface CustomerRepository extends Repository<Customer, Long> {

 @Query(“select c from Customer c where c.emailAddress = ?1”)
 Customer findByEmailAddress(EmailAddress email);
}

If you want to keep the query out of your repository interface you can
also simply use JPA named queries and follow the naming convention of
$domainClass.$methodName, so Customer.findByEmailAddress in this
case. Beyond that, Spring Data supports a named query mechanism across
all store types, by declaring queries in a $store-named-queries.properties
file in META-INF, e.g. mongodb-named-queries.properties. The naming
conventions for the queries themselves follow the pattern described above.

Choosing A Repository Base Interface
In the sample just shown we extend the Repository interface provided by
Spring Data. It is essentially a marker interface that captures the domain
and ID type managed. There are a few other base repositories you might
want to extend from to pull in additional functionality into your repository:

Base interface Description

Repository Marker interface to communicate the
domain and ID types to the infrastructure.

CrudRepository Exposes CRUD (Create, Read, Update,
Delete) methods for the configured domain
type. Extends Repository.

PagingAndSortingRepository Extends CrudRepository and exposes
additional methods to pass sorting
information to the repository and lookup
entities in a paginated way.

JpaRepository,
MongoDbRepository,
Neo4jRepository

Usually extend from
PagingAndSortingRepository and provide
additional, store-specific methods.

We generally recommend not to extend the store-specific interfaces as you
reveal the persistence technology used to the client and couple your code
to it.

Pagination and Sorting
The PagingAndSortingRepository provides an API that captures information
about sorting as well as the definition and results of page-by-page access.
The core abstractions of the API are Sort and Pageable that define how to
page as well as a Page object to capture results. The Page class provides
additional metadata about the page of data—often shown in a UI—such
as how many pages are there in total, or whether it is the first or last page.
With our CustomerRepository implemented PagingAndSortingRepository,
we could write the following code:

// Create request for the 2nd page by a page size of 10
Sort sort = new Sort(Direction.ASC, “lastname”, “firstname”);
Pageable pageable = new PageRequest(1, 10, sort);
Page<Customer> customers = repository.findAll(pageable);

assertThat(customers.isFirstPage(), is(false));
assertThat(customers.hasNextPage(), is(true));

for (Customer customer : customers) {
 // … do something with the Customer
}

The repository abstraction considers method parameters of type Pageable
and Sort as special parameters that need to augment either the query
(sorting) or the query execution (pagination). Here’s the query method
using the pagination from the sample repository already shown above:

interface CustomerRepository extends Repository<Customer, Long> {

 // … other methods omitted
 Page<Customer> findByLastnameLike(String lastname, Pageable
pageable);
}

This definition would make sure the Page instance is populated with the
necessary metadata (potentially by issuing additional queries) and the
limiting of the result set is added to the query by using store specific API
underneath. We’ll see how we can easily obtain Pageable instances from
web request parameters later on.

ADVANCED FEATURES

Spring Data also provides advanced integration with third-party projects
and technologies.

Querydsl
The Querydsl project (http://querydsl.org) aims to bring LINQ-style
(language integrated queries) capabilities to the Java platform. It is a bit like
the JPA criteria API but not tied to JPA, a lot less verbose and thus much
more comfortable to use.

Querydsl is centered around a meta-model generated from domain classes
that can be used to define predicates over the entities. These predicates
can then be executed via a Spring Data Repository.

Metamodel Generation
The meta-model is generated through a step in the build process. Querydsl
currently provides integration for Maven and Ant. Here’s the sample
configuration for JPA and Maven:

<plugin>
 <groupId>com.mysema.maven</groupId>
 <artifactId>apt-maven-plugin</artifactId>
 <version>1.0.9</version>
 <executions>
 <execution>
 <goals>
 <goal>process</goal>
 </goals>
 <configuration>
 <outputDirectory>
 target/generated-sources/java
 </outputDirectory>
 <processor>
 com.mysema.query.apt.jpa.JPAAnnotationProcessor
 </processor>
 </configuration>
 </execution>
 </executions>
</plugin>

Predicate Definition
This configuration will inspect the JPA mapping annotations and create
meta-model classes that can now be used as follows:

QCustomer customer = Qcustomer.customer;
Predicate predicate = customer.lastname.endswith(…).
 or(customer.firstname.startsWith(…));

You see we can easily define constraints on the entities using a fluent API.

Predicate Execution
To eventually execute the predicates just defined, Spring Data provides a
QueryDslPredicateExecutor interface that your repository can extend to
expose the necessary API to your clients:

interface CustomerRepository extends Repository<Customer, Long>,
 QueryDslPredicateExecutor<Customer, Long> {

}

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

5 Core Spring Data

DZone, Inc. | www.dzone.com

A client would then look as follows:

class RepositoryClient {

 @Autowired CustomerRepository repository;

 public void buisnessMethod(String firstname, String lastname) {

 QCustomer customer = Qcustomer.customer;

 List<Customer> customers = repository.findAll(
 customer.lastname.endswith(lastname).or(
 customer.firstname.startsWith(firstname));

 …
 }
}

CDI Integration
The Spring Data modules discussed here all ship with a CDI extension that
allows using the repository abstraction in a JavaEE environment that uses
CDI for dependency injection.

1. Have the necessary Spring Data JARs in your classpath.
2. Declare necessary infrastructure components as CDI beans using the

@Produces/@Disposes annotation.
3. Declare repository interfaces as described above.
4. Inject the repository instances into your CDI managed beans using @

Inject.

JPA
In JPA the core infrastructure abstraction is the EntityManager. Working
in a standalone CDI environment the EntityManager is created by an
EntityManagerFactory. It can be exposed to the infrastructure as follows:

class EntityManagerFactoryProducer {

 @Produces
 @ApplicationScoped
 public EntityManagerFactory createEntityManagerFactory() {
 return Persistence.createEntityManagerFactory(“my-pu”);
 }

 public void close(
 @Disposes EntityManagerFactory entityManagerFactory) {
 entityManagerFactory.close();
 }
}

Once that is done, you can get a hold of your repository instance by
injecting it into your CDI bean:

class RepositoryClient {

 @Inject
 CustomerRepository repository;

 public void businessMethod(EmailAddress email) {
 Customer customer = repository.findByEmailAddress(email);
 …
 }
}

MongoDB
In the case of MongoDB, essentially all you need to change is the
infrastructure setup. Instead of configuring an EntityManagerFactory you
expose a MongoTemplate instance to CDI:

class MongoTemplateProducer {

 @Produces
 @ApplicationScoped
 public MongoOperations createMongoTemplate() throws
 UnknownHostException, MongoException {

 MongoDbFactory factory =
 new SimpleMongoDbFactory(new Mongo(), “database”);
 return new MongoTemplate(factory);
 }
}

The injection of the repository into the client looks identical to the code
shown for JPA:

class RepositoryClient {

 @Inject
 CustomerRepository repository;

 public void businessMethod(EmailAddress email) {
 Customer customer = repository.findByEmailAddress(email);
 …
 }
}

Integration with Spring and SpringMVC
The Spring Data Commons module ships with a variety of support classes
that ease the general interaction with the core Spring framework and
Spring MVC in particular. Here are the interesting types:

Base interface Description

DomainClassConverter Allows conversion of a String ID into
the entity with the given ID using the
findOne(“) method on the repository
registered for the domain type.

DomainClassPropertyEditor Legacy version of DomainClassConverter.

SortHandlerMethodArgument
Resolver

Automatically creates a Sort instance
from HttpServletRequest parameters.

PageableHandlerMethod
ArgumentResolver

Automatically creates a Pageable
instance from HttpServletRequest
parameters.

Converter / PropertyEditor Support
SpringMVC controller methods are extremely flexible and allow you to refer
to URI path segments, request parameters etc. in a type-safe way. With the
DomainClassConverter registered in the application context, you can write
a controller method like this:

@Controller
public class CustomerController {

 @RequestMapping(“/customers/{id}”)
 public String showUserForm(
 @PathVariable(“id”) Customer customer, Model model) {

 …
 }
}

The interesting part here is that for a call to /users/47, you immediately get
the User instance with ID 47 handed into the method in case it is managed
by a Spring Data repository exposing a findOne(…) method. You can simply
register the converter through the appropriate callback method in your
SpringMVC configuration:

class WebConfiguration extends WebMvcConfigurationSupport {

 @Bean
 public DomainClassConverter<?> domainClassConverter() {
 return new DomainClassConverter<FormattingConversionService>(
 mvcConversionService());
 }
}

Pagination and Sorting
The same approach can be used to transparently create instances for
Sort and Pageable from request parameters. This doesn’t even require
the usage of the repository abstraction. All you need to do is configure the
appropriate HandlerMethodArgumentResolver implementations in your
SpringMVC configuration:

class WebConfiguration extends WebMvcConfigurationSupport {

 protected void addArgumentResolvers(
 List<HandlerMethodArgumentResolver> resolvers) {

 resolvers.add(new SortHandlerMethodArgumentResolver());
 resolvers.add(new PageableHandlerMethodArgumentResolver());
 }
}

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

Browse our collection of over 150 Free Cheat Sheets
Upcoming Refcardz

Free PDF

6 Core Spring Data

DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome

refcardz@dzone.com

Sponsorship Opportunities

sales@dzone.com

Copyright © 2013 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“"DZone is a developer's dream",“ says PC Magazine.

This allows SpringMVC controller methods that look like this:

@Controller
public class UserController {

 @Autowired CustomerRepository repository;

 @RequestMapping(“/users”)
 public String showUserForm(Pageable pageable, Model model) {

 Page<Customer> customers = repository.findAll(pageable);
 …
 }
}

The resolver implementations can be customized as you see fit but by
default they will lookup the following request parameters to build up the
Pageable and Sort instances:

Parameter Description

page (0“1) The number of the page to be retrieved. (0-indexed,
defaults to 0)

size (0“1) The size of the page to be retrieved. (defaults to 20)

sort (0“n) A sort expression with comma-separated field references,
terminated by asc or desc to define the order (optional).
E.g /?sort=firstname,asc&lastname=desc

To be able to selectively customize the defaults for Pageable and Sort
instances, the controller method arguments can be annotated with the
following annotations:

Annotation Description

@Qualifier Allows definition of a qualifier in case multiple pages
or sorts need to be handed into a single method. Will
get prepended to the parameters (foo_page, foo_size
etc.).

@PageableDefault Customizes the defaults to be used for the Pageable
instance in case no request parameters are present. If
not set, global defaults apply.

@SortDefault Customizes the defaults to be used for the Sort
instance in case no request parameters are present. If
not set, the Sort will be null.

RESOURCES

Spring Data REST
The Spring Data REST project provides support to automatically export
repository-managed entities in a hypermedia-driven way. By default it
renders customizable JSON representations for your domain classes
but also provides a lot of extension and customization hooks to enable
validation, security and integration of custom code. For more details, see:
https://github.com/SpringSource/spring-data-rest

Project home: http://www.springsource.org/spring-data

Through several sample projects, you’ll learn how
Spring Data provides a consistent programming
model that retains NoSQL-specific features
and capabilities, and helps you develop Hadoop
applications across a wide range of use-cases such
as data analysis, event stream processing, and
workflow.

 BUY HERE

Oliver Gierke is an engineer at SpringSource, member of
the JPA 2.1 expert group, and project lead of the Spring
Data JPA, MongoDB and core modules. He has been
developing enterprise applications and open source
projects for over 6 years. Oliver’s work centers around
architecture, Spring, and persistence technologies. He is
regularly speaks at German and international conferences
and has written numerous technical papers on software
development.

A B O U T T H E A U T H O R R E C O M M E N D E D B O O K

C++
Cypher
Clean Code
Subversion

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.springsource.org/spring-data
http://shop.oreilly.com/product/0636920024767.do?sortby=publicationDate
https://twitter.com/olivergierke/
https://twitter.com/olivergierke/
http://shop.oreilly.com/product/0636920024767.do?sortby=publicationDate

