

DZone, Inc. | www.dzone.com

By Mike Keith

CONTENTS INCLUDE:
n	 Whats New in JPA 2.0
n	 JDBC Properties
n	 Access Mode
n	 Mappings
n	 Shared Cache
n	 Additional API and more...

Getting Started with
 JPA 2.0

A STRONG HERITAGE
While the name may be new, WildFly is the eighth version of the
project previously known as JBoss AS. Red Hat is committed to
Java, and WildFly 8 will focus on quickly delivering an open-source
implementation of Java EE 7.

Key features of WildFly:

• BLAZING FAST START–UP
• MEMORY DIET
• MODULAR DESIGN
• ELEGANT ADMINISTRATION
• COMMAND CENTRAL
• PATCHING MADE EASY
• STRICT COMPLIANCE
• PROJECT UNDERTOW

Learn more about
the Wildfly project
at wildfly.org

http://www.refcardz.com
http://www.dzone.com
http://www.jfrog.com/home/v_artifactorycloud_overview
http://www.jfrog.com/home/v_artifactorypro_overview
https://bintray.com/
http://www.wildfly.org?dzone.com

DZone, Inc. | www.dzone.com

G
et

 M
o

re
 R

ef
ca

rd
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#198
J

av
a

E
n

te
rp

ri
se

 E
d

it
io

n
 7

By: Andrew Lee Rubinger and Arun Gupta

About the PlAtform

Enterprise software development is inherently complex; multiuser systems
open the door to concerns such as transactional integrity, security,
persistence integration, and interaction between components. Very simply
put, the mission of the Java Enterprise Edition is to enable an out-of-the-
box set of configurable services which allow the programmer to write less
and focus on delivering clean business logic.

To this end, Java EE 7 is in fact an aggregate of many interoperable
technologies designed to deliver a unified experience. Application Servers
which are certified to the standards defined by the Java Community
Process are intended to service applications written to the specifications
within the platform.

For the sake of brevity, this Refcard will focus on the key APIs of Java EE 7
most relevant to modern development.

JAvA PlAtform, enterPrise edition 7 (JAvA ee 7)

JSR-342
This umbrella specification ties together the various subsystems which
compose the platform, and provides additional integration support. The
Java EE 7 platform added the following new APIs to previous version of
the platform:

• Java API for WebSocket 1.0
• Batch Applications for the Java Platform 1.0
• Java API for JSON Processing 1.0
• Concurrency Utilities for Java EE 1.0

In addition, Java API for RESTful Web Services 2.0 and Java Message
Service 2.0 went through significant updates. Several other technologies
like Contexts and Dependency Injection 1.1, Bean Validation 1.1, Servlet
3.1, Java Persistence API 2.1, Java Server Faces 2.2, and Java Transaction
API 1.2 were updated to provide a more coherent way of building
enterprise applications.

Useful resources:
• Javadocs for the Java EE 7 API: http://docs.oracle.com/javaee/7/

api/
• Technologies in Java EE 7: http://www.oracle.com/technetwork/java/

javaee/tech/index.html
• Java EE 7 tutorial: http://docs.oracle.com/javaee/7/tutorial/doc/

home.htm
• Java EE 7 samples: https://github.com/javaee-samples/javaee7-

samples

JAvA APi for Websocket 1.0

JSR-356
WebSocket provides a full-duplex, bi-directional communication over a
single TCP channel. This overcomes a basic limitation of HTTP where the
server can send updates to the client and a TCP connection is maintained
between client and server until one of them explicitly closes it. WebSocket
is also a very lean protocol and requires minimal framing on the wire.
Java API for WebSocket 1.0 is a new addition to the platform and provides
an annotated and a programmatic way to develop, deploy, and invoke
WebSocket endpoints.

Annotated endpoint can be defined as:

@ServerEndpoint(value=“/chat”, encoders=ChatMessageEncoder.class,
decoders=ChatMessageDecoder.class)
public class ChatServer {
 @OnMessage
 public String receiveMessage(ChatMessage message, Session client)
{
 for (Session s : client.getOpenSessions()) {
 s.getBasicRemote().sendText(message);
 }
 }
}

Alternatively, programmatic endpoint can be defined as:

public class ChatServer extends Endpoint {
 @Override
 public void onOpen(Session session, EndpointConfig ec) {
 session.addMessageHandler(...);
 }
}

Client endpoint is annotated with @ClientEndpoint and can be connected
to a server endpoint as:

WebSocketContainer container = ContainerProvider.
getWebSocketContainer();
String uri = “ws://localhost:8080/chat/websocket”;
container.connectToServer(ChatClient.class, URI.create(uri));

Public API from javax.websocket:

Class Name Description

Server
Endpoint

Annotation that decorates a POJO as a WebSocket server
endpoint

Client
Endpoint

Annotation that decorates a POJO as a WebSocket client
endpoint

PathParam Annotate method parameters of an endpoint with URI-
template

Session Represents a conversation between two WebSocket
endpoints

Encoders Interface to convert application objects into WebSocket
messages

CONTENTS INCLUDE:

❱❱ API for WebSocket

❱❱ Batch Applications

❱❱ API for JSON Processing

❱❱ Concurrency Utilities

❱❱ JMS 2.0

❱❱ JSF 2.2... and More!

Java Enterprise Edition 7

Brought to you by:

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://docs.oracle.com/javaee/7/api/
http://docs.oracle.com/javaee/7/api/
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://docs.oracle.com/javaee/7/tutorial/doc/home.htm
http://docs.oracle.com/javaee/7/tutorial/doc/home.htm
https://github.com/javaee-samples/javaee7-samples
https://github.com/javaee-samples/javaee7-samples
http://www.wildfly.org?dzone.com

DZone, Inc. | www.dzone.com

Class Name Description

Decoders Interface to convert WebSocket objects into application
messages

Message
Handler

Interface to receive incoming messages in a conversation

OnMessage Makes a Java method receive incoming message

OnOpen Decorates a Java method to be called when connection is
opened

OnClose Decorates a Java method to be called when connection is
closed

OnError Decorates a Java method to be called when there is an
error

bAtch APPlicAtions for the JAvA PlAtform 1.0

JSR-352
Batch Applications allows developers to easily define non-interactive,
bulk-oriented, long-running tasks in item-oriented and task-oriented ways.
It provides a programming model for batch applications and a runtime for
scheduling and executing batch jobs. It supports item-oriented processing
using Chunks and task-oriented processing using Batchlets. Each job is
defined using Job Specification Language, aka Job XML.

<job id=”myJob” xmlns=”http://xmlns.jcp.org/xml/ns/javaee”
version=”1.0”>
 <step id=”myStep”>
 <chunk item-count=”3”>
 <reader ref=”myItemReader”/>
 <processor ref=”myItemProcessor”/>
 <writer ref=”myItemWriter”/>
</chunk>

Each item is read, processed, and aggregated for writing. item-count
number of items are processed within a container-managed transaction.

Different elements define the sequence of a job:
• Step: Independent and sequential phase of a job
• Flow: Sequence of execution elements that execute together as a unit
• Split: Set of flows that execute concurrently
• Decision: Customized way of determining sequencing among step,

flows, and splits

Public API from javax.batch:

Class Name Description

BatchRuntime Represents the JSR 352 runtime

JobOperator Interface for operating on batch jobs

ItemReader Batch artifact that reads item for chunk processing

ItemProcessor Batch artifact that operate on an input item and produce
an output item for chunk processing

ItemWriter Batch artifact that writes to a list of item for chunk
processing

Batchlet Batch step for item-oriented processing

BatchProperty Annotation to define a batch property injected from Job
XML

JobListener Interface that intercepts job execution

StepListener Interface that intercepts step execution

ChunkListener Interface that intercepts chunk processing

Checkpoint
Algorithm

Provides a custom checkpoint policy for chunk steps

Partition
Mapper

Provides unique batch properties for each batch execution

Partition
Reducer

Unit of work demarcation across partitions

JAvA APi for Json Processing 1.0

JSR-353
JSON is a lightweight data-interchange format and is the lingua franca of
the web for consuming and creating web services. A new API to parse and
generate JSON is introduced in the platform which reduces the dependency
on third-party libraries. The API offers to produce/consume JSON text in a
low-level streaming fashion (similar to StAX API for XML).

JsonParser parser = Json.createParser(new FileInputStream(...));

The event-based parser allows an application developer to ask for an event
using parser.next(). This API returns a JsonParser.Event which consists
of values that indicate the start of an object, end of an object, and other
similar events. This gives a more procedural control over processing of the
JSON.

The streaming API allows you to generate a simple JSON object as:

StringWriter w = new StringWriter();
JsonGenerator gen = factory.createGenerator(w);
gen
 .writeStartObject()
 .write(“apple”, “red”)
 .write(“banana”, “yellow”)
 .writeEnd();

The API also offers a high-level Object Model API that provides immutable
object models for JSON object and array structures. These JSON
structures are represented as object models via the Java types JsonObject
and JsonArray.

JsonReader reader = Json.createReader(new FileInputStream(...));
JsonObject json = reader.readObject();

Object Model API allows you to generate a simple JSON object as:

Json.createObjectBuilder()
 .add(“apple”, “red”)
 .add(“banana”, “yellow”)
.build();

Public API from javax.json:

Json Factory class for creating JSON processing objects.

JsonObject Represents an immutable JSON object value

JsonArray Represents an immutable JSON array

JsonWriter Writes a JSON object or array structure to an output
source

JsonReader Reads a JSON object or an array structure from an input
source.

JsonGenerator Writes JSON data to an output source in a streaming way.

JsonParser Provides forward, read-only access to JSON data in a
streaming way.

JsonParser.
EVENT

An event from JsonParser

concurrency utilities for JAvA ee 1.0

JSR-236
Concurrency Utilities for Java EE provides a simple, standardized API for using
concurrency from application components without compromising container
integrity while still preserving the Java EE platform’s fundamental benefits.
This API extends the Concurrency Utilities API developed under JSR-166 and
found in Java 2 Platform, Standard Edition 7 in the java.util.concurrent
package.

Four managed objects are provided:

ManagedExecutorService
ManagedScheduledExecutorService
ManageadThreadFactory
ContextService

Java Enterprise Edition 7

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

DZone, Inc. | www.dzone.com

A new default instance of these objects is available for injection in the
following JNDI namespace:

java:comp/DefaultManagedExecutorService
java:comp/DefaultManagedScheduledExecutorService
java:comp/DefaultManagedThreadFactory
java:comp/DefaultContextService

A new instance of ManagedExecutorService can be created as:

InitialContext ctx = new InitialContext(); ManagedExecutorService
executor =
(ManagedExecutorService)ctx.lookup(“java:comp/
DefaultManagedExecutorService”);

It can also be injected as:

@Resource(lookup=”java:comp/DefaultManagedExecutorService”)
ManagedExecutorService executor;

An application-specific ManagedExecutor can be created by adding the
following fragment to web.xml:
 <resource-env-ref>
 <resource-env-ref-name>
 concurrent/myExecutor
 </resource-env-ref-name>
 <resource-env-ref-type>
 javax.enterprise.concurrent.ManagedExecutorService
 </resource-env-ref-type>
 </resource-env-ref>

Javadocs:

ManagedExecutorService Manageable version of ExecutorService

ManagedScheduled
ExecutorService

Manageable version of
ScheduledExecutorService

ManagedThreadFactory Manageable version of ThreadFactory

ContextService Provides methods for creating dynamic proxy
objects with contexts in a typical Java EE
application

ManagedTaskListener Is used to monitor the state of a task's Future

Definitions for variable argument lists are in the header file cstdarg. Here’s
how that works out in code:

#include <cstdarg>

void funct(int num, ...)
{
 va_list arg_list;
 va_start(arg_list, num);
 int i = va_arg (arg_list, int);
 int j = va_arg(arg_list, double);
 va_end(arg_list);
}

JAvA APi for restful Web services (JAX-rs) 2.0

JSR-339
JAX-RS provides a standard annotation-driven API that helps developers
build a RESTful web service and invoke it. The standard principles of REST,
such as identifying resource as URI, a well-defined set of methods to
access the resource, and multiple representation formats of a resource can
be easily marked in a POJO via annotations.

JAX-RS 2 adds a new Client API that can be used to access web resources.
Without this API, users must use a low-level HttpUrlConnection to access
the REST endpoint.

Author author = ClientBuilder
 .newClient()
 .target(“http://localhost:8080/
resources/authors”)
 .path(“{author}”)
 .resolveTemplate(“author”, 1)
 .request
 .get(Author.class);

Client API provides support for different HTTP verbs, support for custom
media types by integration with entity providers, and dynamic invocation.

JAX-RS 2 allows an asynchronous endpoint that suspends the client
connection if the response is not readily available and later resumes it
when it is.

@Path(“authors”)
public class Authors {
 public void getAll(@Suspended final AsyncResponse ar) {
 executor.submit(new Runnable() {
 public void run() { … }
));
 }
}

Client API also permits retrieval of the response asynchronously by adding
an async() method call before the method invocation.

Author author = ClientBuilder.newClient().target(...).async().
get(Author.class);

Filters and Entity Interceptors are extension points to customize
the request/response processing on the client and the server side.
Filters are mainly used to modify or process incoming and outgoing
request or response headers. A filter is defined by implementing
ClientRequestFilter, ClientResponseFilter, ContainerRequestFilter, and/or
ContainerResponseFilter.

public class HeaderLoggingFilter implements ClientRequestFilter,
ClientResponseFilter {
 // from ClientRequestFilter
 public void filter(ClientRequestContext crc) throws
IOException {
 for (Entry e : crc.getHeaders().entrySet()) {
 … = e.getKey();
 … = e.getValue();
 }
 }

 // from ClientResponseFilter
 public void filter(ClientRequestContext crc,
ClientResponseContext crc1) throws IOException {
 ...
 }
}

Entity Interceptors are mainly concerned with marshaling and
unmarshaling of HTTP message bodies. An interceptor is defined by
implementing ReaderInterceptor or WriterInterceptor, or both.

public class BodyLoggingFilter implements WriterInterceptor {
 public void aroundWriteTo(WriterInterceptorContext wic) {
 wic.setOutputStream(...);
 wic.proceed();
 }
}

JAX-RS 2 also enables declarative validation of resources using Bean
Validation 1.1.

@Path(“/names”)
public class Author {
 @NotNull @Size(min=5)
 private String firstName;

 ...
}

Public API selection from javax.ws.rs package:

Class Name Description

AsyncInvoker Uniform interface for asynchronous invocation
of HTTP methods

ClientBuilder Entry point to the Client API

Client Entry point to build and execute client requests

ClientRequestFilter Interface implemented by client request filters

ClientResponseFilter Interface implemented by client response filters

ContainerResponseFilter Interface implemented by server request filters

ContainerRequestFilter Interface implemented by server response filters

Java Enterprise Edition 7

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

DZone, Inc. | www.dzone.com

Class Name Description

ConstrainedTo Indicates the runtime context in which an JAX-
RS provider is applicable

Link Class representing hypermedia links

ReaderInterceptor Interface for message body reader interceptor

WriterInterceptors Interface for message body writer interceptor

NameBinding Meta-annotation used for name binding
annotations for filters and interceptors

WebTarget Resource target identified by a URI

JAvA messAge service 2.0

JSR-343
Message-oriented middleware (MOM) allows sending and receiving
messages between distributed systems. JMS is a MOM that provides a
way for Java programs to create, send, receive, and read an enterprise
system’s messages.

A message can be easily sent as:

@Stateless
@JMSDestinationDefinition(name=”...”, interfaceName=”javax.jms.
Queue”)
public class MessageSender {
 @Inject JMSContext context;
 @Resource(mappedName=...)
 Destination myQueue;

 public void sendMessage() {
 context.sendProducer().send(myQueue, message);
 }
}

The newly introduced simplified API is very fluent, uses runtime exceptions,
is annotation-driven, and makes usage of CDI to reduce the boilerplate code.

A message can be received as:

public void receiveMessage() {
 String message = context.createConsumer(myQueue).
receiveBody(String.class, 1000);
}

Public API from javax.jms:

JMSContext Main interface to the simplified API

JMSProducer Simple object used to send messages on behalf of
JMSContext

JMSConsumer Simple object used to receive messages from a queue or
topic

JMS
Connection
Factory

Annotation used to specify the JNDI lookup name of
ConnectionFactory

JMS
Destination
Definition

Annotation used to specify dependency on a JMS
destination

QueueBrowser Object to look at messages in client queue without
removing them

conteXts And dePendency inJection for JAvA

JSR-346
The Java Contexts and Dependency Injection specification (CDI) introduces
a standard set of application component management services to the
Java EE platform. CDI manages the lifecycle and interactions of stateful
components bound to well-defined contexts.

CDI provides typesafe dependency injection between components and
defines interceptors and decorators to extend the behavior of components,
an event model for loosely coupled components, and an SPI allowing
portable extensions to integrate cleanly with the Java EE environment.

Java EE 7 platform enables default CDI injection for all beans that explicitly
contain a CDI scope annotation and EJBs. A new attribute, “bean-
discovery-mode” attribute is added to beans.xml:

<beans
 xmlns=”http://xmlns.jcp.org/xml/ns/javaee”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd” bean-discovery-
mode=”all”>

</beans>

This attribute can take the following values:

all: All types in the archive are considered for injection.
annotated: Only types with an explicitly declared CDI scope are considered
for injection.
none: Disable CDI

By default, CDI interceptors are disabled and can be enabled and ordered
via the @javax.interceptor.Interceptor.Priority annotation as shown:

@Priority(Interceptor.Priority.APPLICATION+10)
@Interceptor
@Logging
public class LoggingInterceptor {
 //. . .
}

This can be done for decorators and alternatives too.

In addition, CDI 1.1 also introduces the following:
• Support for @AroundConstruct lifecycle callback for constructors
• Binding interceptors to constructors
• Interceptor binding moved to the interceptors spec, allowing for

reuse by other specifications
• Support for decorators on built in beans
• EventMetadata to allow inspection of event metadata
• @Vetoed annotation allowing easy programmatic disablement of

classes
• Many improvements for passivation capable beans, including @

TransientReference allowing instances to be retained only for use
within the invoked method or constructor

• Scope activation and destruction callback events
• AlterableContext allowing bean instances to be explicitly destroyed
• Class exclusion filters to beans.xml to prevent scanning of classes

and packages
• Unmanaged allowing easy access to non-contextual instances of beans
• Allow easy access to the current CDI container
• AfterTypeDiscovery event, allowing extensions to register additional

types after type discovery
• @WithAnnotations as a way of improving extension loading

performance enchancements

beAn vAlidAtion 1.1

JSR-349
Expanded in Java EE 7, the Bean Validation Specification provides for
unified declaration of validation constraints upon bean data. It may be
used to maintain the integrity of an object at all levels of an application –
from user form input in the presentation tier all the way to the persistence layer.

New in the 1.1 release is:
• Method-level validation (validation of parameters or return values)
• Dependency injection for Bean Validation components
• Integration with Context and Dependency Injection (CDI)
• Group conversion in object graphs
• Error message interpolation using EL expressions
• Support for method and constructor validation (via CDI, JAX-RS etc)
• Integration with CDI (Validator and ValidatorFactory injectable

instances, ConstraintValidator instances being CDI beans and thus
accept @Inject, etc)

Here’s how to apply Bean Validation constraints in a declarative fashion to
ensure the integrity of a User object:

Java Enterprise Edition 7

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

DZone, Inc. | www.dzone.com

public class User {
 @NotNull
 @Size(min=1, max=15)
 private String firstname;

 @NotNull
 @Size(min=1, max=30)
 private String lastname;

 @Pattern(regexp=”\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b”)
 public String email;
}

JAvA servlet 3.1

JSR-340
Servlet technology models the request/response programming model,
and is commonly used to extend HTTP servers to tie into server-side
business logic. In Servlet 3.1, the specification has been expanded over
previous versions to include support for non-blocking I/O, security and API
enhancements.

Non-Blocking I/O

Code Example
A traditional approach to reading data is to poll for available input in a loop:

public class TestServlet extends HttpServlet {
 protected void doGet(HttpServletRequest request,
HttpServletResponse response)
 throws IOException, ServletException {
 ServletInputStream input = request.getInputStream();
 byte[] b = new byte[1024];
 int len = -1;
 while ((len = input.read(b)) != -1) {
 . . .
 }
 }
}

In the case that we’re reading faster than data is available via the read()
method, the calling Thread will block. An alternative approach is to leverage
event listeners; using the new nonblocking additions to the Servlet API, this
can be done as follows:
AsyncContext context = request.startAsync();
ServletInputStream input = request.getInputStream();
input.setReadListener(new ReadListener(){...})

The ReadListener interface defines three callbacks:
• onAllDataRead(): Invoked when all data for the current request has

been read
• onDataAvailable(): When an instance of the ReadListener is registered

with a ServletInputStream, this method will be invoked by the container
the first time when it is possible to read data

• onError(Throwable t): Invoked when an error occurs processing the request

Security enhancements:
• Applying run-as security roles to #init and #destroy methods
• Session fixation attack by adding HttpServletRequest.

changeSessionId and a new interface HttpSessionIdListener. You
can listen for any session id changes using these methods.

• Default security semantic for non-specified HTTP method in
<security-constraint>

• Clarifying the semantics if a parameter is specified in the URI and
payload

• Addition of <deny-uncovered-http-methods/> to web.xml in order to
block HTTP methods not covered by an explicit constraint

Miscellaneous Additions to the API:
• ServletResponse.reset clears any data that exists in the buffer as

well as the status code, headers. In addition, Servlet 3.1 also clears
the state of calling getServletOutputStream or getWriter.

• ServletResponse.setCharacterEncoding: sets the character encoding
(MIME charset) of the response being sent to the client (for example,
to UTF-8).

• Relative protocol URL can be specified in HttpServletResponse.
sendRedirect. This will allow a URL to be specified without a scheme.
That means instead of specifying "http://anotherhost.com/foo/bar.
jsp" as a redirect address, "//anotherhost.com/foo/bar.jsp" can be

specified. In this case the scheme of the corresponding request will
be used.

JAvA Persistence 2.1

JSR-338
Most enterprise applications will need to deal with persistent data,
and interaction with relational databases can be a tedious and difficult
endeavor. The Java Persistence specification aims to provide an object
view of backend storage in a transactionally-aware manner. By dealing
with POJOs, JPA enables developers to perform CRUD operations without
the need for manually tuning SQL.

New in JPA 2.1 is:

support for stored Procedures
We may use the new @NamedStoredProcedureQuery annotation atop an entity
to define a stored procedure:
@Entity
@NamedStoredProcedureQuery(name=”newestBlogsSP”,
procedureName=”newestBlogs”)
public class Blog {...}

From the client side, we may call this stored procedure like:
StoredProcedureQuery query = EntityManager.createNamedStoredProce
dureQuery(“newestBlogsSP”);
query.registerStoredProcedureParameter(1, String.class,
ParameterMode.INOUT);
query.setParameter(1, “newest”);
query.registerStoredProcedureParameter(2, Integer.class,
ParameterMode.IN);
query.setParameter(2, 10);
query.execute();
String response = query.getOutputParameterValue(1);

Bulk Update and Delete via the Query API
CriteriaUpdate, CriteriaDelete, CommonAbstractQuery interfaces
have been added to the API, and the AbstractQuery interface has been
refactored.

A spec example of bulk update might look like:
CriteriaUpdate<Customer> q = cb.createCriteriaUpdate(Customer.
class);
Root<Customer> c = q.from(Customer.class);
q.set(c.get(Customer_.status), “outstanding”)
 .where(cb.lt(c.get(Customer_.balance), 10000));

Entity listeners using CDI
Listeners on existing entity events @PrePersist, @PostPersist, @
PreUpdate, and @PreRemove now support CDI injections, and entity listeners
may themselves be annotated with @PostConstruct and @PreDestroy.

Synchronization of persistence contexts
In JPA 2, the persistence context is synchronized with the underlying
resource manager. Any updates made to the persistence context are
propagated to the resource manager. JPA 2.1 introduces the concept
of unsynchronized persistence context. Here is how you can create a
container-managed unsynchronized persistence context:

@PersistenceContext(synchronization=SynchronizationType.
UNSYNCHRONIZED) EntityManager em;

JAvA server fAces 2.2

JSR-344
JavaServer Faces is a user interface (UI) framework for the development
of Java web applications. Its primary function is to provide a component-
based toolset for easily displaying dynamic data to the user. It also
integrates a rich set of tools to help manage state and promote code reuse.
JSF 2.2 introduces Faces Flow which provides an encapsulation of related
pages and corresponding backing beans as a module. This module has
well-defined entry and exit points assigned by the application developer.
The newly introduced CDI scope @FlowScoped defines the scope of a bean
in the specified flow. This enables automatic activation/passivation of the

Java Enterprise Edition 7

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

bean when the scope is entered/exited:

@FlowScoped(“flow1”)
public class MyFlow1Bean {
 String address;
 String creditCard; //. . .
}

A new EL object for flow storage, #{flowScope}, is also introduced.

<h:inputText id=”input” value=”#{flowScope.value}” />

JSF 2.2 defines Resource Library Contracts, a library of templates and
associated resources that can be applied to an entire application in a
reusable and interchangeable manner. A configurable set of views in the
application will be able to declare themselves as template-clients of any
template in the resource library contract.

JSF 2.2 introduces passthrough attributes, which allow us to list arbitrary
name/value pairs in a component that are passed straight through to the
user agent without interpretation by the UIComponent or Renderer.

Public API from javax.faces.*:

Flow Runtime representation of a Faces Flow.

FlowScoped CDI scope that associates the bean to be in the scope of
the specified Flow.

JAvA trAnsAction APi 1.2

JSR-344
Java Transaction API enables distributed transactions across multiple X/
Open XA resources such as databases and message queues in a Java
application. The API defines a high-level interface, annotation, and scope to
demarcate transaction boundaries in an application.
The UserTransaction interface enables the application to control

transaction boundaries programmatically by explicitly starting and
committing or rolling back a transaction.

@Inject UserTransaction ut;

ut.begin();
…
ut.commit();

ut.rollback() can be called to rollback the transaction.

 JTA 1.2 introduces:
@javax.transaction.Transactional annotation that enables to declaratively
control transaction boundaries on POJOs. This annotation can be specified
at both the class and method level, where method-level annotations over-
ride those at the class level.

@Transactional
class MyBean {
 . . .
}

All methods of this bean are executed in a transaction managed by
the container. This support is provided via an implementation of CDI
interceptors that conduct the necessary suspending, resuming, etc.

JTA 1.2 also introduces a new CDI scope @TransactionScoped. This scope
defines a bean instance whose lifecycle is scoped to the currently active
JTA transaction.

Public API from javax.transaction.*:

User
Transaction

Allows an application to explicitly manage application
boundaries

Transactional Provides the application the ability to declaratively control
transaction boundaries on CDI-managed beans, as well as
classes defined as managed beans

Transaction
Scoped

Specifies a standard CDI scope to define bean instances
whose lifecycle is scoped to the currently active JTA
transaction

Java Enterprise Edition 7

A B O U T T h E A U T h O R S R E C O m m E N D E D B O O k S

DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome

refcardz@dzone.com

Sponsorship Opportunities

sales@dzone.com

Copyright © 2014 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“"DZone is a developer's dream",❱ says PC Magazine.

Arun Gupta is Director of Developer Advocacy at Red Hat, focusing
on Red Hat JBoss Middleware. As a founding member of the Java
EE team at Sun Microsystems, he spread the love for technology all
around the world. At Oracle, he led a cross-functional team to drive the
global launch of the Java EE 7 platform, including strategic planning
and execution, content development, and the execution of marketing
campaigns and programs. After authoring ~1,400 blogs at blogs.
oracle.com/arungupta on different Java technologies, he continues to
promote Red Hat technologies and products at blog.arungupta.me.

Andrew Lee Rubinger is an open-source engineer, developer advocate,
Program Manager at Red Hat, and author of “Continuous Enterprise
Development in Java” from O’Reilly Media. He’s the creator of the
ShrinkWrap project and founding member of the Arquillian Testing
Platform community. Andrew frequently enjoys sharing his experience
in testable development in conferences across the globe and via
@ALRubinger on Twitter.

Introduces Java EE7 in detail, including chapters on
WebSockets, Batch Processing, RESTful Web Services,
JMS, and more.
Buy Here

Hands-on guide to developing enterprise Java
applications in a continuously test-driven fashion.
Walks through the entire development process from
bootstrapping to integration testing and deployment.
Buy Here

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://blog.arungupta.me
http://www.twitter.com/ALRubinger
http://shop.oreilly.com/product/0636920030614.do
http://booksite.continuousdev.org/

