
http://www.riverbed.com/about/document-repository/Application-Performance-Management-for-Dummies.html?CID=70140000000W6Qm&LSD=1Q14_Dzone_Refcard_APM_for_Dummies_ad_AppInternals
http://www.riverbed.com/about/document-repository/Application-Performance-Management-for-Dummies.html?CID=70140000000W6Qm&LSD=1Q14_Dzone_Refcard_APM_for_Dummies_ad_AppInternals
http://www.riverbed.com/about/document-repository/Application-Performance-Management-for-Dummies.html?CID=70140000000W6Qm&LSD=1Q14_Dzone_Refcard_APM_for_Dummies_ad_AppInternals

© DZone, Inc. | DZone.com

Java Performance Optimization
By Pierre-Hugues charbonneau

» JVM Internals
» Class Loading
» Garbage Collection
» Java Concurrency
» Application Budgeting
» Tools
» And more...

C
O

N
T

E
N

T
S

JA
V

a
 E

n
tE

r
pr

is
E

Ed
it

Io
n

 7

Java is among the most widely used programming languages in
the software development world today. Java applications are used
within many verticals (banking, telecommunications, healthcare, etc.),
and in some cases each vertical suggests a particular set of design
optimizations. many performance-related best practices are common
to applications of all kinds. The purpose of this Refcard is to help
developers improve application performance in as many business
contexts as possible by focusing on the JVm internals, performance
tuning principles and best practices, and how to make use of available
monitoring and troubleshooting tools.

It is possible to define “optimal performance” in different ways, but
the basic elements are: the ability of a Java program to perform its
computing tasks within the business response time requirements,
and the ability of an application to fulfill its business functions under
high volume, in a timely manner, with high reliability and low latency.
Sometimes the numbers themselves become patternized: for some
major websites, a page response time of 500ms maximum per
user function is considered optimal. This Refcard will include target
numbers when appropriate, but in most cases you will need to decide
these on your own, based on business requirements and existing
performance benchmarks.

JVM INTErNalS

fOuNdaTIONS

COdE COMpIlaTION aNd JIT
Java byte code interpretation is clearly not as fast as native code
executed directly from the host. In order to improve performance, the
Hotspot JVm looks for the busiest areas of byte code and compiles
these into native, more efficient, machine code (adaptive optimization).
Such native code is then stored in the code cache in non-heap memory.

Note: most JVM implementations offer ways to disable the JIT compiler
(Djava.compiler=none). You should only consider disabling such
crucial optimization in the event of unexpected JIT problems such as
JVm crashes.

The following diagram illustrates the Java source code, just-in-time
compilation processes and life cycle.

Ge
t M

or
e

Re
fc

ar
dz

! V
is

it
Re

fc
ar

dz
.co

m
BROUGHT TO YOU BY: 200

Ja
V

a
 p

E
r

f
O

r
M

a
N

C
E

 O
p

T
IM

Iz
a

T
IO

N

 MEMOry SpaCES

The HotSpot Java Virtual machine is composed of the following
memory spaces.

MeMory Space DeScription

Java Heap Primary storage of the Java program class
instances and arrays.

Permanent Generation

Metaspace (JDK 1.8)

Primary storage for the Java class metadata.

noTe: Starting with Java 8, the PermGen space
is replaced by the metaspace and using native
memory, similar to the IBm JVm.

Native Heap

(C-Heap)

native memory storage for the Threads, Stack,
code cache including objects such as mmAP
files and third party native libraries.

How is your web or mobile app
performing for your end users?

Get answers in minutes.

Find out now!

Riverbed® SteelCentral™ Web Analyzer

SIGN UP FOR A FREE TRIAL

http://www.dzone.com?refcardz
http://www.refcardz.com
http://www.riverbed.com/
https://appresponse.opnet.com/saas_edition/accounts/new?CID=70140000000W6Qr&LSD=1Q14_Dzone_Refcard_APM_BrowserMetrix_WebAnalyzer_Trial
https://appresponse.opnet.com/saas_edition/accounts/new?CID=70140000000W6Qr&LSD=1Q14_Dzone_Refcard_APM_BrowserMetrix_WebAnalyzer_Trial

2 Java Performance oP timization

ClaSS lOadINg

Another important feature of Java is its ability to load your compiled Java
classes (bytecode) following the start-up of the JVm. Depending on the
size of your application, the class loading process can be intrusive and
significantly degrade the performance of your application under high load
following a fresh restart. This short-term penalty can also be explained
by the fact that the internal JIT compiler has to start over its optimization
work following a restart.

It is important to note that several improvements were introduced since
JDK 1.7, such as the ability for the default JDK class loader to better load
classes concurrently.

HOT SpOTS

area of concern recoMMenDation

Performance degradation following a
JVM restart.

Avoid deploying an excessive amount
of Java classes to a single application
classloader (ex: very large WAR file).

Excessive class loading contention
(thread lock, JAR file searches…)
observed at runtime, degrading the
overall performance.

Profile your application and identify
code modules performing dynamic class
loading operations too frequently. Look
aggressively for non-stop class loading
errors such as classnotFoundexception
and noclassDefFounderror.

Revisit any excessive usage of the Java
Reflection API and optimize where
applicable.

java.lang.OutOfMemoryError: PermGen
space error or native memory leak
observed.

Revisit the sizing of your JVm
Permanent Generation and / or native
memory capacity, where applicable.

Analyze your application class loaders
and identify any source of metadata
memory leak.

TrOublESHOOTINg & MONITOrINg

goal recoMMenDation

Keep track of the Java classes loaded
to the different class loaders.

Profile your application using a
Java profiler of your choice such as
JProfiler or Java VisualVM . Focus on
class loader operations and memory
footprint.

enable class loading details via
–verbose:class. For the IBm JVm,
generate multiple Java core snapshots
and keep track of the active class
loaders and loaded classes.

Investigate suspected source(s) of
class metadata memory leak(s).

Profile your application and identify
the possible culprit(s).

Generate and analyze JVm heap
dump snapshots with a primary focus
on classLoader and java.lang.class
instances.

Ensure a proper Permanent
Generation / Metaspace and native
memory sizing.

closely monitor your PermGen,
metaspace and native memory
utilization, and adjust the maximum
capacity where applicable.

Analyze your application class loaders
size and identify opportunities to
reduce the metadata footprint of your
applications, where possible.

garbagE COllECTION

The Java garbage collection process is one of the most important
contributing factors for optimal application performance. In order to
provide efficient garbage collection, the Heap is essentially divided into
sub areas.

HEap arEaS

AREA DeScription

Young
Generation
(nursery
space)

Part of the heap reserved for allocation of new or short-lived objects.

Garbage is collected by a fast but stop-the-world YG collector.

objects that have lived long enough in the young space are
promoted to the old space

noTe: It is important to realize that an excessive size and / or Gc
frequency of the YG space can significantly affect the application
response time due to increased JVm pause time.

Old
Generation
(tenured
space)

Part of the heap reserved for long-lived objects.

Garbage is usually collected by a parallel or mostly concurrent
collector such as cmS or gencon (IBm JVm).

Performance Tip: It is very important to choose and test the optimal
Gc policy for your application needs. For example, switching to a
“mostly” concurrent GC collector such as CMS or G1 may significantly
improve your application average response time (reduced latency).

© DZone, Inc. | DZone.com

http://riverbed.com/

3

gC COllECTOrS
choosing the right collector or Gc policy for your application is a
determinant factor for optimal application performance, scalability and
reliability. many applications are very sensible to response time latencies,
requiring the use of mostly concurrent collectors such as the HotSpot cmS
or the IBm Gc policy balanced.

As a general best practice, it is highly recommended that you determine
most suitable Gc policy through proper performance and load testing.
A comprehensive monitoring strategy should also be implemented in
your production environment in order to keep track of the overall JVm
performance and identify future areas for improvement.

gc arguMentS DeScription

Serial
Collector

-XX:+UseSerialGC

(oracle HotSpot)

Both Young and old collections are done
serially, using a single cPU and in a stop-
the-world fashion.

NOTE: This policy should only be used by
client-side applications not sensitive to
JVm pauses.

Parallel
Collector

-XX:+UseParallelGC

-XX:+UseParallelOldGC

(oracle HotSpot)

-Xgcpolicy:optthruput

(IBm J9, single space,
stop-the-world)

Designed to take advantage of available
cPU cores. Both Young and old collections
are done using multiple Gc threads (via
–XX:ParallelGcThreads=n), thus better
leveraging the available cPU cores from
the host.

NOTE: While the collection time can be
reduced significantly, applications with
large heap size are still exposed to large
and stop-the-world old collections and
affecting the response time.

Mostly
concurrent
collectors
(low-
latency
collectors)

Concurrent Mark-Sweep Designed to minimize impact on
application response time associated with
old generation stop-the-world collections.

most of the collection of the old
generation using the cmS collector is done
concurrently with the execution of the
application.

NOTE: The YoungGen collections are still
stop-the-world events, thus requiring
proper fine-tuning in order to reduce the
overall JVm pause time.

garbagE fIrST (g1) COllECTOr
The HotSpot G1 collector is designed to meet user-defined garbage
collection (Gc) pause time goals with high probability, while achieving high
throughput.

This latest HotSpot collector essentially partitions the heap into a set of
equal-sized heap regions, each a contiguous range of virtual memory. It
concentrates its collection and compaction activity on the areas of the
heap that are likely to be full of reclaimable objects (garbage first), or in
other words on areas with the least amount of “live” objects.

oracle recommends the following use cases or candidates for using the G1
collector, especially for existing applications currently using either the cmS
or parallel collectors:

• Designed for applications that require large heaps (>= 6 GB) with
limited Gc latency (pause time <= 0.5 second).

• more than 50% of the Java heap is occupied with live data (objects
that cannot be reclaimed by the Gc).

• The rate of object allocation rate or promotion varies
significantly.

• Undesired long garbage collection or compaction pauses (longer
than 0.5 to 1 second).

Eden Space

Survivor Space

Old Generation

G1 Heap Allocation

JaVa HEap SIzINg
It is important to realize that no Gc policy can save your application from
an inadequate Java heap sizing. Such exercise involves configuring the
minimum and maximum capacity for the various memory spaces such as
the Young and old generations, including the metadata and native memory
capacity. As a starting point, here are some recommended guidelines:

•	 choose wisely between a 32-bit or 64-bit JVm. If your application
needs more than 2 GB to run with acceptable JVm pause time due to
a large live data footprint, consider using a 64-bit JVm.

•	 Remember that the application is king: make sure that you profile
it and adjust the heap sizing based on our application memory
footprint. It is always recommended to measure the live data
footprint through performance and load testing.

•	 A larger heap is not always better or faster: do not over-tune the
Java heap. In parallel of JVm tuning, identify opportunities to reduce
or “spread” your application memory footprint in order to keep the
average JVm pause time < 1 %.

•	 For a 32-bit JVm, consider a maximum heap size of 2 GB in order to
leave some memory from the address space to the metadata and
native heap.

•	 For 64-bit JVm’s, explore vertical and horizontal scaling strategies
instead of simply attempting to expand the Java heap size beyond 15
GB. Such an approach very often provides better throughput, better
leverages the hardware, and increases your application fail-over
capabilities.

•	 Do not re-invent the wheel: take advantage of the multiple open
source and commercials troubleshooting and monitoring tools
available. The APm (Application Performance management products
have evolved significantly over the past decade.

Java Performance oP timization

© DZone, Inc. | DZone.com

http://riverbed.com/

4 Java Performance oP timization

HOT SpOTS

TrOublESHOOTINg & MONITOrINg

goal recoMMenDation

Measure and monitor
your application
YoungGen and OldGen
memory footprint,
including the GC
activity.

Determine the right
GC policy and Java
heap size for your
application.

Fine-tune your
application memory
footprint such as live
objects.

Profile and monitor your application using a Java profiler
of your choice such as JProfiler, Java VisualVM, or other
commercial APm products.

enable the JVm Gc activity logging via –verbose:gc. You
can also use tools such as GcmV (Gc memory Visualizer) in
order to assess your JVm pause time and memory allocation
rate.

Performance Tip: an excessive memory allocation rate may
indicate a need to perform vertical and/or horizontal scaling,
or to decouple your live data across multiple JVm processes.

For your long-lived objects or long-term live data, consider
generating and analyzing JVm heap dump snapshots.
Heap dump analysis is also very useful at optimizing your
application memory footprint (retention).

Performance Tip: Since going from a 32-bit to a
64-bit machine increases heap requirement for an
existing Java application by up to 1.5 times (bigger
ordinary object pointers), it is very important to use
-XX:+Usecompressedoops in Java version prior to 1.7 (which
is now default). This tuning argument greatly alleviates the
performance penalty associated with a 64-bit JVm.

Investigate
OutOfMemoryError
problems and
suspected source(s) of
OldGen memory leak.

Profile your application for possible memory leaks using
tools such as Java VisualVm or Plumbr (Java memaory leak
detector).

Performance Tip: Focus your analysis on the biggest Java
object accumulation points. It is important to realize that
reducing your application memory footprint will translate in
improved performance due to reduced Gc activity.

Generate and analyze JVm heap dump snapshots using tools
such as memory Analyzer.

JaVa CONCurrENCy

Java concurrency can be defined as the ability to execute several tasks
of a program in parallel. For large Java ee systems, this means the
capability to execute multiple user business functions concurrently while
achieving optimal throughput and performance.

Regardless of your hardware capacity or the health of your JVm, Java
concurrency problems can bring any application to its knees and severely
affect the overall application performance and availability.

THrEad lOCk CONTENTION

Thread lock contention is by far the most common Java concurrency
problem that you will observe when assessing the concurrent threads
health of your Java application. This problem will manifest itself by the
presence of 1...n BLocKeD threads (thread waiting chain) waiting to
acquire a lock on a particular object monitor. Depending onthe severity of
the issue, lock contention can severely affect your application response
time and service availability.

example: Thread lock contention triggered by non-stop attempts to load
a missing Java class (classnotFoundexception) to the default JDK 1.7
classLoader.

It is highly recommended that you aggressively assess the presence of
such a problem in your environment via proven techniques such as Thread
Dump analysis. Typical root causes of this issue can vary from abuse of
plain old Java synchronization to legitimate Io blocking or other non-
thread safe calls. Lock contention problems are often the “symptoms” of
another problem.

JaVa-lEVEl dEadlOCkS

True Java-level deadlocks, while less common, can also greatly affect the
performance and stability of your application. This problem is triggered
when two or more threads are blocked forever, waiting for each other. This
situation is very different from other more common “day-to-day” thread
problems such as lock contention, threads waiting on blocking Io calls etc.
A true lock-ordering deadlock can be visualized as per below:

© DZone, Inc. | DZone.com

http://riverbed.com/

5 Java Performance oP timization

The oracle HotSpot and IBm JVm implementations provide deadlock
detectors for most scenarios, allowing you to quickly identify the
culprit threads involved in such condition. Similar to lock contention
troubleshooting, it is recommended to use techniques such as thread
dump analysis as a starting point.

Once the culprit code is identified, solutions involve addressing the
lock-ordering conditions and/or using other available concurrency
programming techniques from the JDK such as java.util.concurrent.
locks.ReentrantLock,	which	provides	methods	such	as	tryLock(). This
approach gives Java developers much more flexibility and ways to prevent
deadlock or thread lock “starvation.”

ClOCk TIME aNd Cpu burN
In parallel withthe JVm tuning, it is also essential that you review your
application behavior, more precisely the highest clock time and cPU
burn contributors.

When the Java garbage collection and thread concurrency are no longer
a pressure point, it is important to drill down into your application code
execution patterns and focus on the top response time contributors,
referred as clock time. It is also crucial to review the cPU consumption of
your application code and Java threads (cPU burn). High cPU utilization
(> 75%) should not be assumed to be “normal” (good physical resource
utilization). It is often the symptom of inefficientimplementation and/
or capacity problems. For large Java ee enterprise applications,
it is essential to keep a safe CPU buffer zone in order to deal with
unexpected load surges.

Stay away from traditional tracing approaches such as adding response
time “logging” in your code. Java profiler tools and APM solutions exist
precisely to help you with this type of analysis and in a much more efficient
and reliable way. For Java production environments lacking a robust
APm solution, you can still rely on tools such Java VisualVm, thread dump
analysis (via multiple snapshots) and oS cPU per Thread analysis.

Finally, do not try to address all problems at the same time. Start by
building a list of your top five clock time and CPU burn contributors and
explore solutions.

applICaTION budgETINg

other important aspects of your Java applications performance are
stability and reliability. This is particularly important for applications
operating under a SLA umbrella with typical availability targets of 99.9%.
These systems require a high fault-tolerant level, with strict application
and resource budgeting in order to prevent domino effect scenarios.
This approach prevents for example one business process from using all
available physical, middleware, or JVm resources.

HOT SpOTS

TIMEOuT MaNagEMENT
Lack of proper HTTP/HTTPS/TcP IP timeouts between your Java
application and external systems can lead to severe performance
degradation and outage due to middleware and JVm threads depletion
(blocking Io calls). Proper timeout implementation will prevent Java
threads from waiting for too long in the event of major slowdown of your
external service providers.

TOOlS

goalS recoMMenDeD toolS

Pro-active and real-time
performance monitoring, tuning,
alerting, trending, capacity
management and more

enterprise APm solutions

NOTE: APm solutions provide tools allowing you
to achieve most of the following Java performance
goals out-of-the-box

Performance and load testing commercial performance testing solutions
Apache Jmeter

http://jmeter.apache.org/

© DZone, Inc. | DZone.com

http://jmeter.apache.org
http://riverbed.com/

© dZonE, inc. | dZonE.com

6 Java Performance oP timization

aBoUt tHe aUtHor recommenDeD BooK
Pierre-Hugues (‘P-H’) Charbonneau has worked as an IT architect for
CGI Canada for the last 11 years. He specializes in production system
troubleshooting, middleware, JVM tuning and capacity analysis. P-H is the
creator and primary author of Java EE Support Patterns, a technology blog
dedicated to Java EE and Java technologies, focusing on memory leaks,
coding best practices, anti-patterns, and troubleshooting techniques. He
also runs a YouTube channel offering interactive videos and tutorials on Java
and middleware. In his free time he enjoys cinema, sports, nutrition and
spending quality time with his family.

Java Performance is the most comprehensive book on the
subject, covering all aspects of performance tuning at every
stage. Includes sections on JVM performance monitoring,
systematic profiling, HotSpot tuning, bencharking, web
application and services performance, Enterprise Java Beans
performance, tips and tricks, and more.

BUY noW

Browse our ColleCtion of 250+ free resoUrces, inCluding:
researcH GUiDes: Unbiased insight from leading tech experts
refcarDz: Library of 200+ reference cards covering the latest tech topics
commUnities: Share links, author articles, and engage with other tech experts

Join noW

DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513
888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com
Sponsorship Opportunities
sales@dzone.com

Copyright © 2014 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0 $7.95

DZone communities deliver over 6 million pages each month to more than 3.3 million software
developers, architects and decision makers. DZone offers something for everyone, including
news, tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

JVM garbage
collection
assessment,
memory
allocation rate and
troubleshooting

oracle Java VisualVm

http://docs.oracle.com/javase/8/docs/technotes/guides/visualvm/
intro.html

http://java.dzone.com/articles/profile-your-applications-java

oracle Java mission control

http://www.oracle.com/technetwork/java/javaseproducts/mission-
control/java-mission-control-wp-2008279.pdf

http://www.oracle.com/technetwork/java/javase/jmc53-release-
notes-2157171.html

IBm monitoring and Diagnostic Tools for Java (via IBm Support
Assistant tool)

http://www-01.ibm.com/software/support/isa/

JVm verbose:gc logs

JVm argument : -verbose:gc

http://docs.oracle.com/javase/8/docs/technotes/tools/windows/
java.html

IBm GcmV

https://www.ibm.com/developerworks/java/jdk/tools/gcmv/

JVM heap and
class metadata
memory leak
analysis

oracle Java VisualVm and oracle Java mission control

IBm monitoring and Diagnostic Tools for Java

memory Analyzer (heap dump analysis, hprof and phd formats)

https://www.eclipse.org/mat/

https://www.ibm.com/developerworks/java/jdk/tools/
memoryanalyzer/

Plumbr (Java memory leak detector)

https://plumbr.eu/

jmap (heap histogram and heap dump generation)

http://www.oracle.com/technetwork/java/javase/tooldescr-136044.
html#gbdid

JVm verbose:class logs

JVm argument : -verbose:class

IBM Java core file analysis (via kill -3 <PID>)

JVM memory
profiling and heap
capacity sizing

oracle Java VisualVm and Java mission control

IBm monitoring and Diagnostic Tools for Java

Java profilers (JProfiler, YourKit)

http://en.wikipedia.org/wiki/JProfiler

http://www.yourkit.com/

memory Analyzer (heap dump and application memory footprint
analysis)

JVM and
middleware
concurrency
troubleshooting
such as thread lock
contention and
deadlocks

oracle Java VisualVm and oracle Java mission control (threads
monitoring, thread dump snapshots)

jstack, native oS signal such as kill -3 (thread dump snapshots)

http://www.oracle.com/technetwork/java/javase/tooldescr-136044.
html#gblfh

IBm monitoring and Diagnostic Tools for Java

noTe: Proper knowledge on how to perform a JVm thread dump
analysis is highly recommended

Java application
clock time analysis
and profiling

oracle Java VisualVm and oracle Java mission control (build-in
profiler, sampler and recorder)

Java profilers (JProfiler, YourKit)

Java application
and threads CPU
burn analysis

oracle Java VisualVm and oracle Java mission control (cPU
profiler)

Java profilers (JProfiler, YourKit)

noTe: You can also fall back on JVm thread dump and oS cPU per
Thread analysis, if necessary

Java IO and
remoting
contention
analysis,
including timeout
management
assessment and
tuning

oracle Java VisualVm and oracle Java mission control (threads
monitoring, thread dump snapshots)

jstack, native oS signal such as kill -3 (thread dump snapshots)

IBm monitoring and Diagnostic Tools for Java

noTe: Proper knowledge on how to perform a JVm thread dump
analysis is highly recommended

Middleware, Java
EE container
tuning such as
threads, JDBC data
sources and more.

oracle Java VisualVm and oracle Java mission control (extra focus
on exposed Java ee container runtime mBeans)

Java ee container administration and management console

http://www.dzone.com?refcardz
http://javaeesupportpatterns.blogspot.com/
http://www.youtube.com/channel/UCmG437Vr2b_67jkiy1I5NyQ
http://www.amazon.com/Java-Performance-Charlie-Hunt/dp/0137142528/ref=sr_1_3?s=books&ie=UTF8&qid=1405540896&sr=1-3&keywords=java+performance
http://www.amazon.com/Java-Performance-Charlie-Hunt/dp/0137142528
http://www.dzone.com/user/register
http://refcardz.dzone.com/
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://docs.oracle.com/javase/8/docs/technotes/guides/visualvm/intro.html
http://docs.oracle.com/javase/8/docs/technotes/guides/visualvm/intro.html
http://java.dzone.com/articles/profile-your-applications-java
http://www.oracle.com/technetwork/java/javaseproducts/mission-control/java-mission-control-wp-2008279.pdf
http://www.oracle.com/technetwork/java/javaseproducts/mission-control/java-mission-control-wp-2008279.pdf
http://www.oracle.com/technetwork/java/javase/jmc53-release-notes-2157171.html
http://www.oracle.com/technetwork/java/javase/jmc53-release-notes-2157171.html
http://www-01.ibm.com/software/support/isa/
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html
https://www.ibm.com/developerworks/java/jdk/tools/gcmv/
https://www.eclipse.org/mat/
https://www.ibm.com/developerworks/java/jdk/tools/memoryanalyzer/
https://www.ibm.com/developerworks/java/jdk/tools/memoryanalyzer/
https://plumbr.eu/
http://www.oracle.com/technetwork/java/javase/tooldescr-136044.html#gbdid
http://www.oracle.com/technetwork/java/javase/tooldescr-136044.html#gbdid
http://en.wikipedia.org/wiki/JProfiler
http://www.yourkit.com/
http://www.oracle.com/technetwork/java/javase/tooldescr-136044.html#gblfh
http://www.oracle.com/technetwork/java/javase/tooldescr-136044.html#gblfh

