
http://typesafe.com/platform/getstarted

© DZone, Inc. | dzone.com

Reactive Programming with Akka
By Ryan Knight

» The Actor Model

» Defining an Actor

» Creating Actors

» Defining Messages

» Fault Tolerance... and more!C
O

N
T

E
N

T
S

Ja
v

a
 E

n
t

e
r

p
r

is
e

 E
d

it
io

n
 7

Introduction

Akka is a toolkit and runtime for building Reactive Applications on
the JVM. The Reactive Manifesto (reactivemanifesto.org) defines a
reactive application as having four key properties:

1.	 Event-driven

2.	 Scalable

3.	 Resilient

4.	Responsive

Event-driven means the application reacts to events by using an
event-driven programming model. This allows the application to
more effectively share resources by doing work only in response
to outside events and messages. Scalable means the application is
able to react to increasing load by making the architecture highly
concurrent and distributed. When an application is Resilient, it can
easily deal with a failure and recover. Instead of the application
simply dying, it manages the failure through fault isolation so
other parts of the application can keep running. The final property,
Responsive, means the application is real-time, engaging, rich, and
continues to respond even when there are application failures.

Akka was designed to enable developers to easily build reactive
applications using a high level of abstraction. It does so in a very
natural and simple way, without having to deal with low-level
concepts like thread pools, mutexes, and deadlocks. It does so by
leveraging the Actor Model of concurrency and fault-tolerance.
This is a powerful model that allows the behavior and state of the
application to be encapsulated and modeled as an actor. The key
principle behind an actor is that the application only interacts with
it through messages and never talks with it directly. This isolation
allows Akka to manage the currency of the actor. There will be
more discussion on this subject later.

Creating a New Akka Application

To create a new Akka application we will use the open source
Typesafe Activator tool.

1.	 Download the Typesafe Activator: http://typesafe.com/
platform/getstarted

2.	 Launch Typesafe Activator’s UI.

3.	 Create a new app using the “Hello Akka!” template,
which is a good place to begin learning as well as a good
boilerplate project to start from.

4.	Select Run to verify the app is working.

5.	 Optionally, open the new app in an IDE by selecting Code
then Open, and then either Open in Eclipse or Open in
IntelliJ depending on which IDE you are using:

Ge
t M

or
e

Re
fc

ar
dz

! V
is

it
Re

fc
ar

dz
.co

m
BROUGHT TO YOU BY:201

Re

a
c

t
iv

e
 p

r
o

g
r

a
m

m
in

g
 w

it
h

 a
k

k
a

As you make changes to your code, it will be recompiled and you
will see any compile errors in the Compile tab of the activator:

This Refcard introduces Akka by modeling a simple robot named
AkkaBot. The robot walks on four legs like a dog and has basic
head controls. This tutorial can be used from either Java or Scala,
and sample code has been provided in both Java and Scala. The
AkkaBot will be modeled as an actor, with each leg and the head
modeled as child actors. We will make the AkkaBot fault tolerant
so that it reacts to failure and can deal with obstacles that come its
way!

What is Akka and the Actor Model?

The Actor Model was originally invented by Carl Hewitt in 1973
and has seen a recent resurgence in popularity for concurrency.
In the Actor Model, an application is broken up into small units of
execution called actors. These actors encapsulate the behavior and
state of a part of the application. The first part of the definition
of actors makes them sound very much like objects in a standard
object-oriented design, which is true. However, what distinguishes
an actor from a standard object is a third property: communication.

Actors never interact directly with each other and instead
communicate via messages. The behavior of an actor is primarily
defined by how it handles messages as they are received. Since
the state of an actor is isolated from the rest of the system, an

Responsive

Event-Driven

ResilientScalable

http://www.dzone.com?refcardz
http://www.reactivemanifesto.org/
http://en.wikipedia.org/wiki/Actor_model
http://typesafe.com/platform/getstarted
http://typesafe.com/platform/getstarted
http://www.refcardz.com
http://typesafe.com/platform/getstarted
http://typesafe.com/

© DZone, Inc. | dzone.com

2 re active progr amming with akk a

actor never has to worry about synchronization issues, such as thread
locking, when modifying its state.

Where the Actor Model becomes even more interesting is when you
combine actors into a supervisory hierarchy. By organizing the actors
into a hierarchy, you can have parent actors that manage child actors
and delegate computations to child actors. By leveraging the actor
hierarchy, it becomes very easy to make an application fault-tolerant
and scalable.

Actors in Akka are extremely lightweight since they are standard
objects that only consume a few hundred bytes each. The only
constraint in size is the amount of memory of they consume. This
means that a single application can easily create thousands or even
millions of concurrent actors.

An important part of the Actor programming model is that you never
create actors directly, Instead, they are created by the Actor System.
The returned value is not the actual actor; instead it is a reference to
that actor called an ActorRef.

Each actor is then referenced through this ActorRef and it is this
ActorRef that you send messages to. There are three advantages to
using this level of indirection and never accessing the actor directly:

1.	 The actor can be transparently restarted after failure.

2.	 The location of the actor is transparent, allowing Akka to
manage when and where the actor runs.

3.	 The actor is able to maintain mutable state without worrying
about concurrent access to this state.

Shared mutable state is a cause of many concurrency problems. Akka
actors only process a single message at a time. Accessing or mutating
the internal state of an actor is fully thread safe since the thread is
protected by the Actor Model.

Sender ActorRef Actor

Mailbox Dispatcher

MessageMessage

Message
send

has

has

schedule

dequeueenqueue

The strong isolation principles of actors, together with the event-
driven model and location transparency, make it easy to solve hard
concurrency and scalability problems in an intuitive way. It abstracts
away the underlying threading model and actor scheduling so you can
focus on building your application and not infrastructure.

In Java, an actor is created by defining a class that extends
UntypedActor and implements the onReceive method. In Scala,
extend the actor trait and implement the receive method. It is in the
onReceive method where you define the behavior, or how the actor
should react to the different messages it receives.

To start building our robot, we now create a Robot Actor, the AkkaBot,
which contains information about whether the robot is moving and its
direction. It has an onReceive method that defines its behavior for how
it should react upon receiving a Move message.

Defining an Actor

You can define an actor in either your favorite IDE or in the Typesafe
Activator. To do this in the activator:

1.	 Select the Code tab.

2.	 Navigate to either src/main/java or src/main/scala.

3.	 Click the plus sign (+) to add a new file:

4.	Create the files JavaBotMain.java and JavaAkkaBot.java or
ScalaBotMain.scala and ScalaAkkaBot.scala in the source
directory. In those files, enter the Java or Scala code below:

// Java code for JavaBotMain.java
import akka.actor.ActorRef;
import akka.actor.ActorSystem;
import akka.actor.Props;

public class JavaBotMain {

 public static void main(String[] args) {
 // Create the ‘helloakka’ actor system
 final ActorSystem system = ActorSystem.
create(“helloakka”);

 // Create the ‘AkkaBot’ actor
 final ActorRef akkaBot = system.actorOf(Props.
create(AkkaBot.class), “akkaBot”);

 System.out.println(“JavaBotMain Actor System was
created”);
 }
}

// Java code for JavaAkkaBot.java
import akka.actor.UntypedActor;

public class JavaAkkaBot extends UntypedActor {
 boolean moving = false;

 public void onReceive(Object message) {
 unhandled(message);
 }
}

//Scala code for ScalaBotMain.scala
import akka.actor.{Props, ActorSystem}

object ScalaBotMain extends App {
 // Create the ‘helloakka’ actor system
 val system = ActorSystem(“helloakka”)

 // Create the ‘akkaBot’ actor
 val akkaBot = system.actorOf(Props[ScalaAkkaBot], “akkaBot”)

 println(“ScalaBotMain Actor System was created”)	
}

//Scala code for ScalaAkkaBot.scala

import akka.actor.Actor

class ScalaAkkaBot extends Actor {
 var moving: Boolean = false
 def receive = {
 case msg => unhandled(msg)
 }
}

Now we can test the initial implementation by running the code in the
activator:

1.	 In Typesafe Activator, select the Run tab.

http://www.dzone.com?refcardz
http://typesafe.com/

© DZone, Inc. | dzone.com

3 re active progr amming with akk a

2.	 Change the Main Class to be the main class you define (either
JavaBotMain or ScalaBotMain).

3.	 In the output on the left hand side, you should see the output
from application:

Creating Actors

Now we have the defined the actor, let’s create an instance of this
actor. In Akka, you can’t create an instance of an actor the normal way
using “new”. Instead, you have to do so through a factory – in this case,
an ActorSystem. What is returned from this factory is not an instance
of the actor itself, but an ActorRef pointing to our actor instance.

This level of indirection adds a lot of power and flexibility. It enables
location transparency meaning that the ActorRef can, while retaining
the same semantics, represent an instance of the running actor in-
process or on a remote machine (i.e. location doesn’t matter). This
also means that the runtime can if needed optimize the system by
changing an actor’s location or the application’s topology while it is
running. Another thing that this level of indirection enables is the “let it
crash” model of failure management in which the system can heal itself
by crashing and restarting faulty actors.

The factory in Akka to create actors is the ActorSystem, and is
to some extent similar to Spring’s BeanFactory. It also acts as a
container for your actors, managing their life cycles. You create
also an actor through the actorOf factory method. This method
takes a configuration object called Props and a name. Actor (and
ActorSystem) names are important in Akka; you use them when
looking actors up and configuring them in the configuration file.

The Actor System in Akka is also much more than just a factory for
creating actors. It manages the entire lifecycle of the actor, maintains
the execution context (thread pool) in which actors run, a scheduling
service, an event stream of what is happening and more.

Previously, we added the basic code for creating an ActorSystem and
the AkkaBot in JavaBotMain.java:

final ActorSystem system = ActorSystem.create(“helloakka”);
final ActorRef akkaBot = system.actorOf(Props.
create(JavaAkkaBot.class), “akkaBot”);

 If you are using Scala, the code in ScalaBotMain.scala looks similar:

val system = ActorSystem(“helloakka”)
val akkaBot = system.actorOf(Props[ScalaAkkaBot], “akkaBot”)

Creating an actor using the Actor System directly creates the actor at
the top of the hierarchy. Actors can also be created as children of other
actors using an actor’s local Actor Context. The Actor Context
contains information about the Actor System relevant to each actor,
such as who its parent and children are. When an actor uses this
context to create another actor, the new actor becomes a child actor.
In this way the actor hierarchy gets built out.

Defining Messages

An actor does not have a public API in terms of methods that you

can invoke. Instead, its public API is defined through messages that
the actor handles. Messages can be of arbitrary type (any subtype of
object in Java or any in Scala). This means that we can send boxed
primitive values (such as String, Integer, Boolean, etc.) as messages or
plain data structures like arrays, collection types, and value objects.

However, since the messages are the actor’s public API, you should
define messages with good names and rich semantic and domain
specific meaning, even if it’s just wrapping your data type. This makes
it easier to use, understand, and debug actor-based systems. In Java,
this is typically done using public static classes. In Scala, this is done
with case objects or classes. Then when someone is looking at the
actor code, they can easily see what messages are handled for the
Actor. This also makes the messages part of the auto-generated Java
or Scala API docs.

Now we want to define three different messages:

•		 Move starts the robot moving

•		 Stop stops the robot

•		 GetRobotState gets the robot’s state

•		 RobotState holds the robot’s current state

Let’s start by defining the messages in Java by putting them inside the
AkkaBot class. It is very important that the messages we create are
immutable (meaning that they cannot be changed). If not, we run the
risk of accidentally sharing mutable state between two different actors,
which will violate the Actor Model.

// Inside the AkkaBot.java code add the following inner
classes:
public enum Direction { FORWARD, BACKWARDS, RIGHT, LEFT }
public static class Move {
 public final Direction direction;
 public Move(Direction direction) { this.direction =
direction; }
}
public static class Stop {}
public static class GetRobotState {}
public static class RobotState {
 public final Direction direction;
 public final boolean moving;
 public RobotState(Direction direction, boolean moving) {
 this.direction = direction;
 this.moving = moving;
 }
}

In Scala, case classes and case objects make excellent messages since
they are immutable and have support for pattern matching –
something we will take advantage of in the actor when processing the
messages the actor receives.

// Add the following to the ScalaAkkaBot.scala file
object ScalaAkkaBot {
 sealed abstract class Direction
 case object FORWARD extends Direction
 case object BACKWARDS extends Direction
 case object RIGHT extends Direction
 case object LEFT extends Direction
 case class Move(direction:Direction)
 case object Stop
 case object GetRobotState
 case class RobotState(direction: Direction, moving: Boolean)
}

Tell the Actor (To Do Something)

All communication with actors is done through asynchronous message
passing. This is what makes actors reactive. An actor doesn’t do anything
unless it’s been told to do something, and you tell it to do something
by sending the message. Sending a message asynchronously means
that the sender does not stick around waiting for the message to be
processed by the recipient actor. Instead, the actor hands the message
off by putting it on the recipient’s mailbox and is then free to do
something more important than waiting for the recipient to react on
the message. The actor’s mailbox is essentially a message queue and
has ordering semantics. This guarantees that the ordering of multiple

http://www.dzone.com?refcardz
http://typesafe.com/

© DZone, Inc. | dzone.com

4 re active progr amming with akk a

messages sent from the same actor is preserved, while the same
messages can be interleaved with the messages sent by another actor.

When the actor is not processing messages, it is in a suspended state
in which it does not consume any resources apart from memory.

You tell an actor to do something by sending a message into the tell
method on the ActorRef. This method puts the message on the actor’s
mailbox and then returns immediately.

Internally, an actor responds to messages by overriding the onReceive
method. That method takes a single parameter - a message of type
Object for Java or Any for Scala. In the onReceive method, the
primary behavior of an actor is defined. This behavior can be any
standard logic such as modifying the internal state of an actor, creating
or calling other actors, business logic or any other behavior.

First let’s define the onRecieve for the Move and Stop messages.
If you are doing this in Java make the following changes to the
JavaAkkBot.java:

// Add the following field:
Direction direction = Direction.FORWARD

// Change onReceive method to be
public void onReceive(Object message) {
 if (message instanceof Move) {
 direction = ((Move) message).direction;
 moving = true;
 }
 else if (message instanceof Stop) {
 moving = false;
 }
 else {
 unhandled(message);
 }
}

 For Scala, make the following changes in ScalaAkkaBot:

/// add the following import inside the ScalaAkkaBot class:
import ScalaAkkaBot._

// Add the following field
var direction: Direction = FORWARD

//Change the onReceive method to be:

def receive = {
 case Move(newDirection) =>
 moving = true
 direction = newDirection
 println(s”I am now moving $direction”)
 case Stop =>
 moving = false
 println(s”I stopped moving”)
 case msg => unhandled(msg)
}

 If you are using Akka from Scala, then you can also use the ! alias,
called the bang operator.

We can now test out the actors by sending them some simple
commands from the Bot Main app.

For Java, add the following to the JavaBotMain.java file:

akkaBot.tell(new JavaAkkaBot.Move(JavaAkkaBot.Direction.
FORWARD), ActorRef.noSender());
akkaBot.tell(new JavaAkkaBot.Move(JavaAkkaBot.Direction.
BACKWARDS), ActorRef.noSender());
akkaBot.tell(new JavaAkkaBot.Stop(), ActorRef.noSender());

 For Scala, add the following to the ScalaBotMain.scala file:

akkaBot ! ScalaAkkaBot.Move(ScalaAkkaBot.FORWARD)
akkaBot ! ScalaAkkaBot.Move(ScalaAkkaBot.BACKWARDS)
akkaBot ! ScalaAkkaBot.Stop

When you run the application, you should see some basic logging of
the application such as:

JavaBotMain Actor System was created
I am now moving FORWARD
I am now moving BACKWARDS
I stopped moving

The ‘self’ Reference

Sometimes the communication pattern is not just one-way, but instead
lends itself towards request-reply. One explicit way of doing that is by
adding a reference of yourself as part of the message so the receiver
can use that reference to send a reply back to you. This is such a
common scenario that Akka directly supports it. For every message
you send, you have the option of passing along the sender reference
(the actor’s ActorRef). If you are sending a message from within an
actor, then you have access to your own ActorRef through the self
reference. In Java, you can access the self reference through the
getSelf() method. In Scala, use self.

// From within an Actor
akkaBotRef.tell(new JavaAkkaBot.Move(JavaAkkaBot.Direction.
FORWARD), getSelf());

In Scala, this is simplified a bit. Scala has something called implicit
parameters, which allows you to automatically and transparently pass
parameters into methods. We can take advantage of this feature to
automatically pass along the sender reference when you send a
message to another actor.

This code will, if invoked from within “Actor A,” automatically pass
along the ActorRef of “Actor A” as the sender of this message:

// Within an Actor the sender is automatically the self
ActorRef
akkaBotRef ! ScalaAkkaBot.Move(ScalaAkkaBot.FORWARD)

In Java, if you are not inside an actor or do not want to pass the sender,
use ActorRef.noSender() instead. In Scala, if the tell method is called
from outside an actor, then the implicit sender parameter will not be
found. In this case, the default parameter for tell is used, which is Actor.
noSender. An example of both these cases is in the Java or Scala main
classes where messages were sent to the robot without a sender.

The ‘sender’ Reference

When an actor receives and processes a message in the onReceive
method, the sender of that message is available. Since each message is
paired with its unique sender reference, the “current” sender reference
will change with each new message you process. In Java, you can
access it using the getSender() method. In Scala, just use the sender
reference. For example, to send a message back to the sender of the
message that is being handled do:

// Java code
getSender().tell(new Greeting(greeting), getSelf());

// Scala code
sender ! Greeting(greeting)

 If you need to use a specific sender reference after some
asynchronous processing, like after calling other actors, you will need
to store a reference to the sender in a variable. The reason is that the
sender might change if other messages or processing happens in the
meantime.

In some cases there might not be a sender, like when a message is
sent from outside an actor or the sender was Actor.noSender. In these
cases, sending a message to sender would cause it to be sent to dead
letters. The dead-letter actor is where all unhandled messages end up.
For debugging and auditing purposes, you can watch for messages to
the dead-letter actor.

http://www.dzone.com?refcardz
http://typesafe.com/

© DZone, Inc. | dzone.com

5 re active progr amming with akk a

Actor Hierarchies

The real power of the Actor Model is with actor hierarchies. An actor
hierarchy is when a parent actor creates and supervises child actors.
This structure helps avoid cascading failures that can take down an
entire system by isolating and supervising child nodes.

Creating child actors is very similar to creating top level actors - the
only difference is the context the child actors are created in. The
actor context can be thought of as where in the actor hierarchy an
actor lives. As an example, lets create a Bot Master that creates several
children. For Java, add the class JavaBotMaster that creates several
children in the constructor:

import akka.actor.ActorRef;
import akka.actor.Props;
import akka.actor.UntypedActor;

public class JavaBotMaster extends UntypedActor {

 public JavaBotMaster() {
 for (int indx = 0; indx < 10; indx++) {
 context().actorOf(Props.create(JavaAkkaBot.class));
 }
 }

 public void onReceive(Object message) {}
}

 For Scala, add the class ScalaBotMaster:

import akka.actor.{Props, Actor}

class ScalaBotMaster extends Actor {

 import ScalaBotMaster._
 import ScalaAkkaBot._

 for (indx <- 1 to 10) {
 context.actorOf(Props[ScalaAkkaBot])
 }

 def receive = {
 case _ =>
 }
}

In both Java and Scala, we get the local actor context and create new
actors in that context. That makes all of the ScalaAkkaBots created
children of the Bot Master. Now that the Bot Master has children it can
interact with the children directly. To do this, lets add a simple method
to start the child bots moving.

For Java, add the StartChildBots static class and modify the
onReceive:

public void onReceive(Object message) {
 if (message instanceof StartChildBots) {
 for (ActorRef child : getContext().getChildren()) {
 System.out.println(“Master started moving “ +
child);
 child.tell(new JavaAkkaBot.Move(JavaAkkaBot.
Direction.FORWARD), getContext().self());
 }
 System.out.println(“Master has started children bots”);
 }
}

public static class StartChildBots {}

 For Scala, add a case object StartChildBots:

object ScalaBotMaster {
 case object StartChildBots
}

 Then modify the receive function:

def receive = {
 case StartChildBots =>
 context.children.foreach { child =>
 println(s”child=$child”)
 child ! Move(FORWARD)
 }
 println(“Master has started children bots.”)
}

What this does is look in the Master Bot’s context for all of its children.
It then iterates through the children and sends them a message.

To test this out, lets modify the Akka Bots so they print out their own
path to make it easier to see where trace statements are coming from.
In Java, change the println’s to be:

System.out.println(self().path() + “ is now moving “ +
direction);

 Then modify the main class to start the Bot Master instead:

// Create the ‘AkkaBot’ actor
final ActorRef akkaBot = system.actorOf(Props.
create(JavaBotMaster.class), “akkaBotMaster”);
akkaBot.tell(new JavaBotMaster.StartChildBots(), ActorRef.
noSender());

 In Scala, change them to be:

System.out.println(self().path() + “ is now moving “ +
direction);

 Finally, modify the Scala main class:

val akkaBotMaster = system.actorOf(Props[ScalaBotMaster],
“akkaBotMaster”)

The method call to self.path gets the path of the current actor. This
path will be something like:

akka://helloakka/user/akkaBotMaster/$f

 The $f is the name of the actor. Since we didn’t give it an explicit
name, Akka gave it a randomly chosen name. From the path we can
see this actor is a child of akkaBotMaster.

This exercise should give you a good sense for how the context is
where an actor lives in the hierarchy of other actors, since you can see
how an actor can get its parents and children. A child actor can be
referenced via its parent.

Fault-Tolerant and Self-Healing

The reason actor hierarchies are so powerful is they provide a way to
build systems that are fault-tolerant and self-healing. This can be done
by isolating the errors to child actors and monitoring those actors for
failures.

Failure is a normal part of any application and can happen from a wide
variety of causes. With actors the failures can happen during startup,
message processing or other lifecycle events. What is unique about the
actor model is a failure doesn’t cause the entire application to crash;
rather the fault is isolated to an individual actor.

There are two ways actors can deal with failures. The first is through
customizing the supervision strategy. Each actor has a default
supervisor strategy that defines how it handles failures in its children.
The default supervisor strategy for an exception is to restart the actor.
This supervisor strategy can be overridden to define different behavior.
Besides restart, other possible actions include escalating the exception
up the hierarchy, simply resuming the actor or stopping the actor.

Resuming and restarting might seem to be the same, however there
is one key difference. When an actor is restarted a new instance of the
actor is created, which resets its state. If an actor is resumed the actor
state is maintained. With both strategies the message that caused

http://www.dzone.com?refcardz
http://typesafe.com/

© DZone, Inc. | dzone.com

6 re active progr amming with akk a

the fault is lost, but the actor does not lose any of its other messages
waiting in the mailbox.

The second way a parent can manage the failures of its children is to
add watches to the children. Then the parent receives a Terminated
message when the child is terminated. As an example let’s assume that
if a child robot stops, we want to do some special processing. To do
this we simply add a watch after creating the robot.

In Java, this would be done with the following changes. In the
constructor of the Java Bot Master add a watch:

ActorRef child = context().actorOf(Props.create(JavaAkkaBot.
class)); context().watch(child);

And then handle the case of receiving a terminated message in the
onReceive method:

else if (message instanceof Terminated) {
 System.out.println(“Child has stopped ... starting a new
one”);
 ActorRef child = context().actorOf(Props.
create(JavaAkkaBot.class));
 context().watch(child);
}

 In Scala, we would add the following to the creation of the children:

val child = context.actorOf(Props[ScalaAkkaBot])
context.watch(child)

And then modify the receive function to handle the Terminated
message:

case akka.actor.Terminated(ref) =>
 println(“Child has stopped ... starting a new one”)
 val child = context.actorOf(Props[ScalaAkkaBot])
 context.watch(child)

Now we need to make the child randomly fail. This can be done in Java
by adding the field to the Move message handler in the JavaAkkaBot:

Random rand = new java.util.Random();
int nextInt = rand.nextInt(10);
if ((nextInt % 2) == 0) {
 context().stop(self());
}

For Scala, add the following to the Move message handler in the
ScalaAkkaBot:

val random = scala.util.Random

println(s”${self.path} am now moving $direction”)
if ((random.nextInt(10) % 10) == 0) {
 context.stop(self)
}

You can now see how the actors deal with failure. Uncaught exceptions
also stop the actor allowing the supervisor to decide what to do.

Further Learning

Now that you have learned the basics of Akka check other Akka
Activator templates that will teach you about topics including
supervision, clustering, and dependency injection. For a curated list of
these templates, visit: http://akka.io/downloads/

The Akka reference documentation is a very complete resource: http://
akka.io/docs/

For an in-depth slide presentation about Akka, check out the creator
of Akka’s slides, Introducing Akka: http://www.slideshare.net/jboner/
introducing-akka

The Scala Days 2013 site has a number of recorded Akka
presentations: http://scaladays.org/ny2013/

ABOUT THE AUTHOR RECOMMENDED BOOK

Ryan Knight is a consultant and trainer for Typesafe where he helps others
learn and use Scala, Akka and Play. Ryan frequently does training and
presentations at conferences around the world, such as JavaOne, Devoxx,
and many other Java get–togethers. He has over 15 years of experience
with enterprise software development. He first started consulting
with Enterprise Java in 1999 with the Sun Java Center. Since then he has
worked with a wide variety of companies, such as the Oracle, LDS Church,
Williams Pipeline, Riot Games, Sony, T-Mobile, Deloitte and the State of
Louisiana. This has given him experience with wide range of business,
such as genealogy, telecommunications, finance and video games.

Effective Akka distills years of experience building distributed,
asynchronous, high-performance applications using Akka. Written by
Jamie Allen, creator of Akka, this book includes deep-dives into domain-
driven and work-distribution actor applications, interaction modeling,
actors vs. classes, common patterns, actor monitoring, and more.

BUY NOW

Browse Our Collection of 250+ Free Resources, including:
Research Guides: Unbiased insight from leading tech experts
Refcardz: Library of 200+ reference cards covering the latest tech topics
Communities: Share links, author articles, and engage with other tech experts

JOIN NOW
DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513
888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com
Sponsorship Opportunities
sales@dzone.com

Copyright © 2014 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0 $7.95

DZone communities deliver over 6 million pages each month to more than 3.3 million software
developers, architects and decision makers. DZone offers something for everyone, including
news, tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

http://www.dzone.com?refcardz
http://akka.io/downloads/
http://akka.io/docs/
http://akka.io/docs/
http://www.slideshare.net/jboner/introducing-akka
http://www.slideshare.net/jboner/introducing-akka
http://scaladays.org/ny2013/
http://www.typesafe.com/
http://www.amazon.com/Effective-Akka-Jamie-Allen/dp/1449360076/
http://www.dzone.com/user/register/
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com

