
Making the Shift from
Relational to NoSQL

Making the Shift from Relational to NoSQL
How to change the way you think about data modeling

While the hype surrounding “NoSQL” (non-relational) database technology has become deafening,
there is real substance beneath the often exaggerated claims. But like most things in life, the
benefits come at a cost. Developers accustomed to data modeling and application development
against relational database technology will need to approach things differently. This white paper
highlights the differences between a relational database and a distributed document-oriented
database, the implications for application development, and guidance that can ease the transition
from relational to NoSQL database technology.

Why make the shift?
Change is hard and rarely undertaken unless it alleviates significant pain. The white paper
Why NoSQL provides a comprehensive look at the motivating challenges that have led to the
emergence and rapid adoption of NoSQL database technology. In a nutshell, the transition has
been spurred by the need for flexibility – both in the scaling model and the data model.

Scaling model

Relational database technology is a “scale up” technology – to add capacity (whether data storage
or I/O capacity) you need to get a bigger server. The modern approach to application architecture
is to scale out, rather than scale up. Instead of buying a bigger server, you add more commodity
servers, virtual machines or cloud instances behind a load balancer. Conversely, capacity can be
easily removed when no longer required. While scaling out is already common at the application
logic tier, database technology is only now catching up.

Data model

The scale-out deployment benefits of NoSQL technology frequently get the most attention, but
equally important are the benefits afforded by a schemaless approach to data management. With
a relational database, you must define a schema before adding records to the database. Each
record added to the database must adhere strictly to this schema with its fixed columns and data
types. Changing the database schema, particularly when dealing with a partitioned relational
database spread across many servers, is difficult. If your data capture and management needs are
constantly evolving, a rigid schema quickly becomes a blocker to change.

NoSQL databases (whether key-value, document, column-oriented or otherwise) scale out, and
they don’t require schema definition prior to inserting data nor a schema change when data
capture and management needs evolve.

The rest of this paper will focus on distributed document-oriented NoSQL database technology,
with Couchbase being one of the most visible and widely adopted examples.

http://www.couchbase.com/why-nosql/nosql-database

Relational data model
Highly-structured table

organization with rigidly-defined
data formats and record structure.

Document data model
Collection of complex documents
with arbitrary, nested data formats

and varying “record” format.

R1C1 R1C2 R1C3 R1C4

R2C1 R2C2 R2C3 R2C4

R3C1 R3C2 R3C3 R3C4

R4C1 R4C2 R4C3 R4C4

{
“UUID”: “21f7f8de-8051-5b89-86
“Time”: “2011-04-01T13:01:02.42
“Server”: “A2223E”,
“Calling Server”: “A2213W”,
“Type”: “E100”,
“Ini a ng User”: “dsallings@spy.net”,
“Details”:

{
“IP”: “10.1.1.22”,
“API”: “InsertDVDQueueItem”,
“Trace”: “cleansed”,
“Tags”:

[
“SERVER”,
“US-West”,
“API”
]

}
}

{
“UUID”: “21f7f8de-8051-5b89-86
“Time”: “2011-04-01T13:01:02.42
“Server”: “A2223E”,
“Calling Server”: “A2213W”,
“Type”: “E100”,
“Ini a ng User”: “dsallings@spy.net”,
“Details”:

{
“IP”: “10.1.1.22”,
“API”: “InsertDVDQueueItem”,
“Trace”: “cleansed”,
“Tags”:

[
“SERVER”,
“US-West”,
“API”
]

}
}

{
“UUID”: “21f7f8de-8051-5b89-86
“Time”: “2011-04-01T13:01:02.42
“Server”: “A2223E”,
“Calling Server”: “A2213W”,
“Type”: “E100”,
“Ini a ng User”: “dsallings@spy.net”,
“Details”:

{
“IP”: “10.1.1.22”,
“API”: “InsertDVDQueueItem”,
“Trace”: “cleansed”,
“Tags”:

[
“SERVER”,
“US-West”,
“API”
]

}
}

{
“UUID”: “21f7f8de-8051-5b89-86
“Time”: “2011-04-01T13:01:02.42
“Server”: “A2223E”,
“Calling Server”: “A2213W”,
“Type”: “E100”,
“Ini a ng User”: “dsallings@spy.net”,
“Details”:

{
“IP”: “10.1.1.22”,
“API”: “InsertDVDQueueItem”,
“Trace”: “cleansed”,
“Tags”:

[
“SERVER”,
“US-West”,
“API”
]

}
}

The relational vs. document-oriented data model
The figure below compares four records from a relational database with four from a document-
oriented database.

Relational data model

As shown above, each record in a relational database conforms to a schema – with a fixed number
of fields (columns) each having a specified purpose and data type. Every record has the same
structure. If you wish to capture different data in the future, the database schema must be revised.

Additionally, the relational model is characterized by database normalization, where large tables
are decomposed into smaller, interrelated tables. The figure below illustrates the concept:

In the above example, the database is used to store error log information. Each error record (each
row in Table 1) consists of an error number (ERR), the time the error occurred (TIME) and the
datacenter (DC) in which the error occurred. Instead of repeating all the datacenter information in
each error record (location, phone number), each error record points to a row in the Data Centers
Table (Table 2), which includes the location of the datacenter (LOC) and the phone number (NUM).

In the relational model, records are “striped” across multiple tables, with some data shared by
multiple records (multiple error records share the same data center information). The upside is
that there is less duplicated data in the database. The downside is that a change in a single record
can mean locking down many tables simultaneously to ensure a change doesn’t leave the database
in an inconsistent state. ACID transactions can be complex on a relational database because the
data, even of a single record, is spread about. This complex web of interrelationships between
shared data items is what makes it so difficult to distribute relational data across multiple servers
and can lead to performance challenges both reading and writing data.

Table 1: Error Log Table 2: Data Centers

1 ERR TIME FK(DC2)

KEY ERR TIME DC

2 ERR TIME FK(DC2)

3 ERR TIME FK(DC2)

4 ERR TIME FK(DC3)

1 DEN
303-223-

2332

212-223-
2332

415-223-
2332

KEY LOC NUM

2 NYC

3 SFO

http://en.wikipedia.org/wiki/Database_normalization
http://en.wikipedia.org/wiki/ACID

When storage resources were expensive and scarce, these tradeoffs made sense. But the price of
storage has dropped precipitously over the last 40 years. For many, the tradeoff calculus no longer
makes sense. Using more storage in exchange for better application performance and the ability
to easily distribute workloads across machines is now the best choice for many applications.

Document data model

Use of the term “document” is a bit confusing. A document-oriented database really has nothing
to do with “documents” in the classical sense of the word. It doesn’t mean books, letters or
articles. Rather, a document in this case refers to a data record that is self-describing as to the
data elements it contains. XML documents, HTML documents and JSON documents are examples
of “documents” in this context. Couchbase Server is a document- oriented database that uses
JSON as the document format. In Couchbase, error records would look like this:

As can be seen, the data is denormalized. Each record contains a complete set of information
related to the error without external reference. The records are self-contained. This makes it very
easy to move the entire record to another server – all the information simply comes along with
it. There is no concern about having parts of the record in other tables left behind. And because
only the self-contained record (document) needs to be updated when changes are made (versus
changing entries in multiple tables simultaneously), ensuring ACID compliance is far easier, at
record boundaries. Performance is also increased on reads.

But complete data denormalization is not required in a document database, as highlighted in the
next section. In fact, in this particular example, maintaining documents representing each data
center and simply referencing those from each error record would probably be the right decision.
Separation would eliminate duplication and allow quick changes to information shared across
many records (e.g. if the telephone number for the data center changed, there would be no need
to update it in every error record). Ultimately, however, data modeling decisions are dependent on
the use case and planned update patterns.

Document modeling: rules of thumb
It takes a while to unlearn habits. But do not fear: by understanding alternatives you will be able
to make more efficient use of your trusted knowledge as well. After all, the tool best suited for the
job will leave you with the least headache. If you know more tools, you can choose more wisely.

Models

In an application, data objects are a central construct – the model layer in Model-View-Controller
(MVC). These are the documents that hold your data and let you manipulate it. If a blog has
posts and comments, these are likely two different models. Ideally, you should have a separate
document for every post and every comment.

When looking at an existing application, stop at the Object-Relational Mapping (ORM) layer.
Instead of splitting your models up into tables and rows, turn them into JSON and make them a
document. Each document gets a unique ID by which you can find it later. Done.

{
 “ID”: 1,
 “ERR”: “Out of Memory”,
 “TIME”: “2004-09-16T23:59:58.75”,
 “DC”: “NYC”,
 “NUM”: “212-223-2332”
}
{
 “ID”: 2,
 “ERR”: “ECC Error”,
 “TIME”: “2004-09-16T23:59:59.00”,
 “DC”: “NYC”,
 “NUM”: “212-223-2332”
}

http://www.json.org/
http://en.wikipedia.org/wiki/Denormalization

(Primary) Keys

In the NoSQL world the document ID is the one and only key to a document. They are roughly
equivalent to primary keys in a relational database. Usually an ID can only appear once in a
database. (Different NoSQL solutions have different names for these: buckets, collections, tables,
etc. The idea is roughly similar to a table in an RDBMS. You can have many per server).

Some NoSQL database systems sort data by ID. Data with nearby IDs can be accessed more
efficiently than IDs that are all over the place. Keeping data that you tend to access at the same
time closer together makes your application faster.

The larger point here though is that an ID-lookup is extremely fast, and by selecting clever IDs you
can make your life a lot easier. One example is the use of prefixes (user:com.example:123) to group
your documents.

Multiple places and editability

Suppose you have a piece of data that shows up all over your application but you still want to be
able to edit that data. For example, a photo on flickr has a title. The photo can show up in your
photo stream, in sets, collections, groups on your flickr front page, and in many more places.

Usually, a photo’s title is shown with the photo. You could create a document for each occurrence
of the photo in each of the places. But then, if you change the title of your picture, you need
to update a bunch of documents. If you know this is a bounded number (e.g., no more than
10-100) and the renaming doesn’t have to happen simultaneously in all places (which means
an asynchronous background task could do the renames), using separate documents for each
occurrence can work fine.

However, if the number of copies is unbounded and could potentially lead you to update
thousands of documents, that approach probably won’t work. Instead, you would want to keep
the title and perhaps other identifying data in a single “photo information” document and create a
separate “photo placement” document for each place the photo appears (these “photo placement”
documents would each point to the photo’s information document). Now when you display a
photo you will make two lookups: one for the placement document and then another for the
photo information document. If you want to change the title of a photo, you just edit the single
photo information document and it will be changed everywhere on your site.

There is a special trick you can use in Couchbase: Using view collation you can have a single query
answering for all the data you need. Christopher Lenz wrote an outstanding blog post on this
topic, highlighting three approaches to modeling using the blog example.

With views, Couchbase Server allows one to keep a single canonical source of a piece of data while
having it show up in many different places.

In the RDBMS world you are taught to normalize your data as much as possible; in the NoSQL
world you are taught to denormalize as much as possible. In both cases, the truth is somewhere in
the middle.

http://www.cmlenz.net/archives/2007/10/couchdb-joins
http://www.cmlenz.net/archives/2007/10/couchdb-joins

We’re the company behind the Couchbase open source project, a vibrant community of developers and users of Couchbase

document-oriented database technology. Our flagship product, Couchbase Server, is a packaged version of Couchbase

technology that’s available in Community and Enterprise Editions. We’re known for our easy scalability, consistent high

performance, 24x365 availability, and a flexible data model. Companies like Amadeus, Bally’s, Beats Music, Cisco, Comcast,

Concur, Disney, eBay / PayPal, Neiman Marcus, Orbitz, Rakuten / Viber, Sky, Tencent, Verizon and hundreds of others around

the world use Couchbase Server for their interactive web, mobile, and IoT applications. www.couchbase.com

About Couchbase

2440 West El Camino Real | Ste 101

Mountain View, California 94040

1-650-417-7500

www.couchbase.com

Concurrency

Let’s stay with the blog example. There are multiple authors, maybe an editor, and each of them
is looking at a single article at any given time. No two people work on the same article, usually. If
you have data that you know is only edited by a single person at any given time, it’s a good idea to
place it in a single document.

Comments are different. Many people can write comments and they can do so independently
and simultaneously. Once the post is published comments can be added immediately. To avoid
write contention – that is, concurrent writes happening to the same document – you can store
comments in separate documents, thus ensuring that again, only one author is editing a single
document at any given time.

To avoid serializing and locking each comment author out or accidentally overwriting any
data, just store the posts ID with the comment to be able to fetch them back in one request for
displaying. (Note: Couchbase won’t allow overwriting data, but it requires more complex code to
handle that case, so it’s best to just avoid it if possible.)

Conclusion
The relational data model relies on rigid adherence to a database schema, normalization of data
and joins to store data and perform complex queries. Over the last 40 years, relational modeling
and query techniques have been well established and are familiar to most application developers.

But changes in application, user and infrastructure characteristics have led application developers
and architects to seek alternative “NoSQL” (non-relational) database technologies. Many view dis-
tributed document database technology as a natural successor to relational database technology:

§§ It effortlessly scales across commodity servers, virtual machines or cloud instances.
§§ It doesn’t require a rigid schema before inserting data, nor does it require a schema change

when different data must be captured and processed.
§§ Its rich data model and view technology allows for complex data modeling, capture and

queries.
It’s important to note that in some cases, additional storage may be required given the preference
for data denormalization. But the overall benefits in performance, scalability and flexibility are
usually, and increasingly, a more than fair trade.

http://www.couchbase.com/couchbase-open-source-project
http://www.couchbase.com/couchbase-server/overview
http://www.couchbase.com/couchbase-server/editions
http://www.couchbase.com/couchbase-server/why-couchbase
http://www.couchbase.com/couchbase-server/why-couchbase
http://www.couchbase.com/couchbase-server/why-couchbase
http://www.couchbase.com/couchbase-server/why-couchbase
http://www.couchbase.com/couchbase-server/why-couchbase
http://www.couchbase.com/customers
http://www.couchbase.com/customers
http://www.couchbase.com/

