
WHITE PAPER

Development Testing For Java Applications

More. Better. Faster.

Today’s software development teams are under immense pressure to meet aggressive functionality, secu-

rity, efficiency, quality and compliance goals. Users demand new releases faster, with top-notch quality and

security. Considering the high cost of quality and security failures, it is more important than ever to address

this risk throughout the software development process. Potential problems need to be spotted early in order

to prevent release delays or, even worse, post-production failures. In today’s economy, teams also need to

demonstrate that they are creating value for their employer. They need visibility into software defects and

advance warning of impending problems to deliver robust products on schedule and to prove the efficiency

and performance of the team. In short, they need to deliver more features, better quality and security, faster

to the market.

2

WHITE PAPERDevelopment testing For Java applications

While these challenges exist for all development teams, regardless
of market vertical or development language, this document will
focus on Java because industry experts believe that there are more
than 9 million Java developers. With user count in the billions,
Java is one of the most widely used platforms. Moreover, Java is
a modern language with some nice features to improve quality,
security and developer productivity.

•	 The Java virtual machine uses a garbage collector to ensure
objects are cleaned up automatically, which reduces the burden
of developers managing resources.

•	 Java provides language constructs for concurrency and synchro-
nization, enabling developers to more easily take advantage of
concurrency.

•	 Java offers a security manager and sandboxes to limit the
impact of vulnerabilities.

Java Developers Aren’t Immune to Risk

While these features simplify development of many straightfor-
ward applications, they can also give developers a false sense of
comfort in large, sophisticated projects. The garbage collector is
unpredictable, so loosely managed resources can lead to resource
exhaustion in addition to creating performance concerns. While the
language understands concurrency, developers still need to be care-
ful to avoid deadlocks and race conditions as complexity increases.
The security manager will enforce the security policy, but develop-
ers need to carefully define and implement the policy to ensure
proper protection. Even so, it is possible that platform defects will
allow malicious code to escape the security manager. In fact, there
were widely publicized vulnerabilities in the Oracle JVM in August
2012 and January 2013 that allowed attackers to successfully bypass
the Java sandbox and install malware on the host system.

Even worse, these features provide little to no protection from
application-level vulnerabilities like SQL injection and cross-site
scripting, which account for 75% of reported attacks and can be
exploited to access business-critical information. LinkedIn expe-
rienced such a breach in June 2012 that exposed the passwords
of more than 6.5 million LinkedIn users and caused significant
brand damage. That breach was attributed to an application-level
vulnerability along with ineffective security planning.

Open Source Solutions Help Reduce Risk

Fortunately, there are a number of tools in the Java world to help
address these gaps. Some of these are commercial solutions, and
there are many high-quality free open source tools as well—with
professional support available for both. These tools can help

you understand the effectiveness of your development effort by
identifying coding errors, enforcing coding standards, providing
test frameworks and providing information about which code
is executed. They are accessible to developers, easy to use within
many development environments and very popular.

Unfortunately, it’s not always obvious how certain types of users
can take advantage of these tools. For example, many of these tools
do a good job with their intended task and are easy to use with
small teams or individual developers. Large-scale projects, and
environments where access to information and code needs to be
controlled, may not be able to use these tools in the traditional way.
The good news is that the Java ecosystem provides a solution to
this problem as well. There are enterprise-class development test-
ing platforms that make these same tools accessible even to secure,
global, distributed development organizations. Such solutions can
actually add significant value for all organizations, by tying all
information together and increasing visibility and efficiency.

These tools generally focus on specific aspects of software
development, and getting a comprehensive view of your develop-
ment effort often requires finding a combination of multiple tools
that best meets the needs of your organization. That includes not
just the information they can uncover, but how they can work
together to help you understand the larger trends and take action
to effectively manage your effort.

Designing Your Process

A robust development process is not the result of simply install-
ing tools recommended by somebody else. There are a number of
important considerations when selecting tools to be a part of your
process. You need to understand the development challenges your
team faces, including business requirements, external influences
and individual expertise. You need to determine which tools are
going to support your process and keep developers focused and
productive. You need to consider the costs to acquire, deploy, run
and maintain the tools, as well as the effort required to train users,
evangelize adoption, and understand and manage the information
generated by the tools.

Your development process needs to help you manage risk in your
development effort. To ensure adoption, the tools should be easy
for developers to use, they should provide obvious value to users
and they should be tightly integrated into a consistent developer
workflow. Two areas of particular concern are consistency and
accuracy. Consistency is important because you need to minimize
time spent interacting with different tools—that not only wastes

3

WHITE PAPERDevelopment testing For Java applications

time, but increases training and maintenance costs, introduces
opportunities for user error and can give the process a reputation
for poor efficiency. This concern is often addressed by automating
usage of the low-level tools and consolidating the data collected
by the individual tools into a platform that helps organize issues
and identify trends. Accuracy is important because you need to
minimize time spent investigating bogus issues—as with consis-
tency, these bogus issues have a direct impact on productivity and
indirect impact on user sentiment.

A related consideration is that the tools should provide the
most relevant and specific information possible. Some analysis
tools look for coding defects like null dereferences while others
look for violations of coding rules like, “a class that implements
Serializable must define a serialVersionUID field”; the tools you
choose need to focus on the issues that you care about. If you
don’t care about enforcing coding standards, then you don’t want
to clutter your analysis results with coding standard violations.
Similarly, it’s good to know that a particular problem occurs at
a particular place in the code, but it’s better for the tools to tell
you which variable is affected, what has happened to that vari-
able prior to the problem, which code paths are affected by the
problem and so forth.

There are considerations from Management’s perspective as well:
the process needs to (among other things) help avoid duplicated
or wasted effort and ensure accountability. For example, you need
a way for issues to be assigned an owner—the person responsible
for moving that issue into the next stage of its lifecycle. It might
be as simple as assigning coding issues to the person that most
recently modified the related source code, but many teams need
to do more. Perhaps a different team (like QA or Security) needs

to sign off on the fix before it can be marked “Closed,” or maybe
the code author is not available to work on the issue. Low-level
data from the tools needs to be interpreted or filtered before
deciding what action to take. For example, testing and coverage
tools identify test violations and coverage while developers need
to know specifically which section(s) of code require additional
tests—after filtering out code that is already tested, isn’t impor-
tant, can’t be tested or is not actually used. If you have compliance
or regulatory concerns, you also need to consider how usage of
the tools can be monitored, results can be archived and whether
sufficient access controls can be put into place.

For your process to be successful, it needs to provide value that
clearly outweighs the cost of use. Developers and managers have
to decide whether there is a net benefit in adopting the new
process. It needs to enable your team to easily understand what to
do: identify the problems that you care about, minimize the effort
wasted jumping through hoops and sifting through the noise and
boil problems down to specific action items with clear owners.
Ultimately, the success of your team—and the process—will be
measured by your ability to meet your obligations and deliver
quality product on schedule. An unused tool is, of course, worth-
less; a process built around an unused tool is even worse. How can
you rely on a process that isn’t consistently used?

Enter Coverity

The Coverity® Development Testing Platform is designed to tie
disparate parts of your software development lifecycle (SDLC)
together, acting as a hub for team members from developers to
executives, keeping them focused on their quality and security
goals and giving them visibility into the development process.

Coverity Development Testing Platform
Analyze | Remediate | Govern

Dynamic
Analysis

Architecture
Analysis

Analysis Integration
FindBugs | FxCop

Analysis Integration
Toolkit

SDLC Integrations

Third-Party Metrics

IDE

Code Coverage

Text Execution

ALM
HP | IBM

SCM

Defect Tracking

Build/Continuous
Integration

Proprietary Code | Open-Source Code

Policy Manager

Coverity SAVE
Static Analysis Verification Engine

Quality
Advisor

Security
Advisor

Test
Advisor

Coverity Connect

4

WHITE PAPERDevelopment testing For Java applications

It is common for analysis tools to identify more issues than can
be realistically addressed. In order to wisely manage resources,
teams must be able to effectively manage, filter and prioritize
those issues. For compliance, it is important to demonstrate
the effectiveness and adoption of your quality, security and risk
management processes. When there are problems in the field, it
is important to recognize past mistakes so they can be avoided in
the future.

Each team’s development process probably uses a few different,
specialized analysis tools to find important coding problems. The
Coverity SAVE® Static Analysis Verification Engine is designed
to complement common analysis tools by finding the important
defects that those tools often miss. It is highly tuned to reduce
noise and highly configurable to adapt to your coding idioms and
standards. It does extremely sophisticated analysis of complex,
inter-procedural data flows, utilizing patented techniques to auto-
matically filter out false positives while finding real, important
defects. This keeps the list of issues manageable while making it
significantly more likely that each issue is something that you care
about. It has proven itself on code bases ranging from thousands
to millions of lines of code, from teams of a handful of develop-
ers to thousands. Coverity Quality Advisor adds specific analysis
rules on top of SAVE to find the most critical quality issues.

Coverity SAVE and Coverity Quality Advisor focus on the
problems that not only have a significant impact in your project,
but that are extremely difficult to identify through other means.
For example, a null dereference that affects just one code path
that spans multiple files and functions would be a nightmare to
track down through code review or even with a debugger. A race
condition caused by a single, unsynchronized method accessing a
data member in an otherwise safe class would be extremely time
consuming, if not practically impossible to find. Coverity SAVE
truly understands how the pieces fit together, enabling sophisti-
cated algorithms that accurately find problems such as these in a
reasonable amount of time.

To demonstrate this difference, Coverity analyzed the source code
for version 1.496 of the Jenkins job management system often
used for automated software builds (http://www.jenkins-ci.org)
using release 6.5.1 of the Coverity Development Testing Platform
and FindBugs™ version 2.0.1, with all checks enabled. Of 852
unique issues identified, only 28 issues were identified by both
Coverity and FindBugs. Coverity found 197 unique issues, with
188 of those coming from high-impact categories (security and

concurrency bugs, resource leaks and unhandled exceptions like
null dereferences). FindBugs found 627 unique issues, with 29
coming from those high-impact categories. Both found interest-
ing unique issues, and your needs will dictate whether you should
use either or both as a part of your process.

Coverity Dynamic Analysis and Coverity Architecture Analysis
look for problems from a different perspective. Many of the most
difficult problems to find, such as resource leaks and concur-
rency problems, are the result of complex runtime relationships
that developers didn’t anticipate or fully understand. Coverity
Dynamic Analysis is especially designed to quickly find exactly
these problems by watching your program as it runs. Coverity
Architecture Analysis helps you understand and manage the
complex relationships between parts of your code so you can
enforce modularity and interfaces to reduce the opportunity for
problems.

The Coverity platform and Coverity Security Advisor understand
web application frameworks like Spring MVC. This enables our
analysis to accurately follow control and data flow even when
it’s expressed via annotations, framework configuration files or
container convention as opposed to traditional Java source code.
Coupled with Coverity SAVE’s detailed understanding of pro-
gram behavior, we’re able to accurately report security problems
before your application goes to audit. Unlike most security audits,
the results are conveyed in a developer-friendly manner, including
the problem, the recommended fix and the location where the fix
should be implemented—which is often not where the problem
manifests.

Coverity Quality Advisor and Coverity Security Advisor surface
all of these quality and security issues, as well as defects identi-
fied by other analysis tools—even homegrown, open-source and
proprietary ones within Coverity Connect. The import process
is configured to normalize issues from different analysis engines
ensuring consistency and helping developers easily prioritize dif-
ferent types of issues as the cream rises to the top.

Coverity
197

FindBugs
62728

5

WHITE PAPERDevelopment testing For Java applications

Coverity Test Advisor improves your testing efficiency and effec-
tiveness by identifying new test cases that will help make your
product more robust and merging unit test and coverage informa-
tion with analysis data from other parts of the platform, such as
Coverity SAVE. In addition to helping you manage test results
by identifying failed tests, it also recommends where missing tests
should be added. To keep users focused on the important areas, it
provides sophisticated testing coverage rules for important code
based not only on file and function, but on code constructs, when
code was last impacted by code changes and other criteria. Your
testing success doesn’t depend on manual evaluation of low-level
data—you tell the solution how to find important code, and it
will automatically notify you when the important code is not
being adequately tested, even recommending which test suite or
test case you might want to extend. Developers are automatically
focusing on the important code when they address these issues.

Coverity Connect is the unified issue management console for
the Coverity Development Testing Platform. The platform con-
solidates all issues in a single place, making it easy for developers
to use Coverity Connect to find and prioritize the issues that
need to be addressed as part of a consistent workflow. Regardless
of source, all issues can be assigned an owner so there is clear
ownership and accountability, avoiding wasted effort as well as
issues falling through the cracks. The platform tracks issues across

branches and builds, so you can easily understand the impact of
issues in global and local contexts. It can integrate with the most
popular IDEs, so developers can work in a familiar, productive
environment. It supports the enforcement of enterprise-grade
access controls and audit trails, so you can rest assured that your
code, data and artifacts are safe and secure. Automation ensures
that developers remain productive and accurate data flows to the
relevant people and processes and management has visibility into
the state of development.

Users gain these benefits for all issues managed in the Coverity
platform, even those from third-party tools like FindBugs or
homegrown solutions that don’t have their own sophisticated
issue-management capabilities. In fact, the Coverity platform
includes a preconfigured integration with FindBugs to reduce
noise while taking advantage of Coverity’s sophisticated analysis
and defect-management capabilities.

Coverity Policy Manager enables management to track the
important metrics and understand at a glance whether develop-
ment is proceeding appropriately. Policy violations are clearly
identified, with the ability to drill down and find the source of
those problems so they can be fixed. Because the data is con-
solidated, normalized and fresh, management can easily spot
emerging problems. It is easy to demonstrate compliance with

Automatically identify missing unit tests in critical areas of the code.

WHITE PAPERDevelopment testing For Java applications

For More Information

www.coverity.com
Email: info@coverity.com

U.S. Sales: (800) 873-8193

International Sales: +1 (415) 321-5237

Email: sales@coverity.com

Coverity Inc. Headquarters

185 Berry Street, Suite 6500

San Francisco, CA 94107 USA

© 2013 Coverity, Inc. All rights reserved. Coverity, the Coverity logo and Coverity SAVE are registered trademarks of Coverity, Inc. in the U.S.
and other countries. All other company and product names are the property of their respective owners.

development policy, adopt the platform, and prove efficiency
and performance. Even better, products are released to QA and
Security Audit with fewer defects, leading to faster, more predict-
able release schedules.

As an example, consider a team whose process utilizes the
Coverity Development Testing Platform, FindBugs, JUnit and
Cobertura. They have tuned, highly accurate static analysis in the
form of Coverity SAVE and FindBugs enables them to find a
broad range of coding and security errors while code is developed;
Coverity Dynamic Analysis to identify critical problems that can
only be found at run time; JUnit as a testing framework to verify
that the application behaves as intended; Cobertura to understand
which parts of the application are being tested; and Coverity Test
Advisor to keep developers focused on testing the important code.
All the while, Coverity Connect ties these process components
into a unified, enterprise-grade platform that enables develop-
ers to quickly and easily prioritize, manage and fix all identified
issues. Coverity Policy Manager enables Management’s gover-
nance, risk management and compliance efforts. If a need arises
to detect additional problems with other tools or custom check-
ers, the platform will easily accommodate that while maintaining
the same process, workflow and capabilities.

Why Coverity

The Coverity Development Testing Platform allows Java develop-
ers to accurately identify and easily remediate many classes of
high-impact software problems such as:

•	 Web security defects like injection and cross-site scripting
•	 Memory and resource leaks
•	 Deadlock and other concurrency problems
•	 Improper or unsafe use of null references
•	 Incorrect use of APIs like Android, JPA, Hibernate and Spring
•	 Performance and maintainability issues
•	 Testing policy violations

In addition to providing world-class analysis capabilities—with
accuracy and relevance recognized as second to none—it uni-
fies all of the tools you use as part of your development process,
enabling developers to find, manage and resolve software defects
easily and quickly.

Management gains visibility into the state of development, with
metrics that identify risk so it can be addressed early, and that
demonstrate effective management throughout the development
lifecycle. More importantly, real issues are addressed early in the
development lifecycle leading to faster, more predictable releases.

Coverity, the leader in development testing, is the trusted stan-
dard for companies that need to protect their brands and bottom
lines from software failures. More than 1,100 Coverity customers
use Coverity’s development testing platform to automatically
test source code for software defects that could lead to product
crashes, unexpected behavior, security breaches or catastrophic
failure. Coverity is a privately held company headquartered in
San Francisco. Coverity is funded by Foundation Capital and
Benchmark Capital.

For More Information

Find out how Coverity can help your organization improve the
quality and security of your Java code. To learn more, contact your
Coverity representative or visit us at www.coverity.com

