

DZone, Inc. | www.dzone.com

By Mike Keith

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 J

PA
 2

.0

G
et

 M
or

e
Re

fc
ar

dz
! V

is
it

 r
ef

ca
rd

z.
co

m
#127

CONTENTS INCLUDE:
n	 Whats New in JPA 2.0
n	 JDBC Properties
n	 Access Mode
n	 Mappings
n	 Shared Cache
n	 Additional API and more...

Getting Started with
 JPA 2.0

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.couchbase.com/download
http://www.answerhub.com/try?utm_source=refcardz&utm_medium=fpad&utm_campaign=sandbox
http://answerhub.com/landingpage
http://answerhub.com/request-demo/
http://answerhub.com/pricing
http://answerhub.com/

DZone, Inc. | www.dzone.com

G
et

 M
o

re
 R

ef
ca

rd
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#195
H

T
M

L
5

:
In

de
xe

dD
B

By: Gerard Gallant

IntroductIon

IndexedDB is an exciting browser-based database technology capable
of holding large amounts of structured data and conducting high-
performance searches using indexes. IndexedDB functionality is available
online, offline, and even from within HTML5 Web Workers!

Cookies
This Refcard is aimed at intermediate to advanced web developers, but
should be useful for anyone who is starting to build more heavy-duty
client-side apps.

Cookies have their uses: when you log into a website, for example, a
special authentication cookie is used to tell the server that you’ve logged in
and may now view a given page.

In general, however, cookies in modern websites and web applications are
discouraged -- partly because of their size (typically 4KB per cookie), and
partly because all cookie data is passed back and forth with every call to
the server, even if the data isn't required for that request.

All of that extra data costs your users money: you're both increasing their
data usage bills and reducing the number of requests the server can
handle at once, which can slow down responses.

HTML5 Web Storage
Web storage has several advantages: most notably, perhaps, it is
supported by nearly every modern browser, including Internet Explorer 8.

By default, web storage allows you 5-10MB of space to work with, and
your data is stored locally on the device rather than passed back-and-forth
with each request to the server. Web storage is useful for storing small
amounts of key/value data and preserving functionality online and offline.

With web storage, both the keys and values are stored as strings.

Web storage is not ideal, however, if you want to store large amounts of
structured data. That’s where HTML5 IndexedDB databases come in.

HTML5 IndexedDB
IndexedDB works both online and offline, allowing for client-side storage of
large amounts of structured data, in-order key retrieval, searches over the
values stored, and the option to store multiple values per key.

With IndexedDB, all calls are asynchronous and all interactions happen
within a transaction.

Note: The specification for IndexedDB includes a section on synchronous
calls, originally intended for use within HTML5 Web Workers, but that
section of the specification might be removed in the future because no
browsers currently support synchronous calls.

Also, you may have run across a technology called HTML5 Web SQL
and wonder why that wasn’t included in this discussion. The HTML5
Web SQL technology has been deprecated by W3C and it’s now highly
recommended that developers avoid that technology because browser
vendors are not encouraged to support it. IndexedDB is the recommended
alternative.

Browser support
Browser support for IndexedDB has been increasing and, as of mid-2013,
it's available in the following browsers:

Internet Explorer 10, Firefox, Chrome, Chrome for Android, Firefox for
Android, and BlackBerry 10

The following website is updated regularly and can save considerable
testing time when you need to determine if a desired feature is available
in the browser(s) you intend to support: http://caniuse.com. This tool
also indicates the version of the browser in which a given feature became
available.

For extended support in browsers that don’t support IndexedDB but do
support the deprecated HTML5 Web SQL technology like Safari (the default
browser on the Mac OS, iPhone, and iPad), there is a special JavaScript
shim available that manipulates the Web SQL database in the background
and exposes the IndexedDB API for your code to interact with. The shim
can be found here: http://nparashuram.com/IndexedDBShim/

Test if the feature exists
Even if you plan to support only certain browsers, it’s always best to test
for feature support before trying to use that feature. You can test to see if
the browser supports HTML5 IndexedDB like this:

if (window.indexedDB) { /* IndexedDB is supported */ }

Same-origin policy
When you store information on a user's device, you don't want other
websites reading or manipulating the data you’ve stored. To avoid this,
browsers enforce a same-origin policy for IndexedDB databases so that
only the website that created the database can access it. The protocol,
domain, and port of any site requesting access must match that of the
originating site.

So if WebSiteA.com creates an IndexedDB database, then WebSiteA.com/
ProductInfo/ could access the database since it belongs to the same
domain.

Pages from WebSiteA.com, however, would not be able to access the
database. This is because the domains are the same, but the protocol
differs (https rather than http).

CONTENTS INCLUDE:

❱	Create, Read, Update, Delete

❱	Using Indexes

❱	IndexedDB from within Web Workers

❱	Security

❱	Error Handling

HTML5: IndexedDB

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://caniuse.com
http://nparashuram.com/IndexedDBShim/
mailto:info@cloudbees.com
http://www.answerhub.com/try?utm_source=refcardz&utm_medium=sqad&utm_campaign=sandbox

2 HTML5: IndexedDB

DZone, Inc. | www.dzone.com

A crafty website might try to get around the same-origin policy restriction
by loading WebSiteB's page into a Frame or iFrame to try and get a hold of
the data. To prevent this attack vector, if a page is loaded into a Frame or
iFrame and belongs to a different domain than the main page, as a security
precaution, the page within the Frame/iFrame will not be allowed to access
its own database.

Storage limits
There are no restrictions on the size of the data stored within the database
but, depending on the browser, there may be size restrictions on the
database itself.

With the desktop version of Firefox, an IndexedDB can use up to 50MB of
storage before the user is presented with a message to find out if they want
to allow the website to use more storage. If the user allows for an increase
in storage, the IndexedDB growth will then only be limited by the capacity of
the user's hard drive.

The mobile version of Firefox follows the same approach, except that the
threshold for a user prompt is 5MB rather than 50MB.

With Internet Explorer 10, a database can use up to 10MB of storage by
default before the user is presented with a message asking if additional
storage is permitted. There also appears to be a hard coded upper limit
of 250MB (in testing, adjusting the Temporary Internet Files limit above
250MB had no effect even with a reboot).

In Internet Explorer, if the database has reached its maximum size (either
the user has chosen not to allow additional storage to be used or the upper
limit of 250MB has been reached), the browser will not throw an error if
your code tries to add additional records. Instead, if you watch the disk
performance, or the Indexed DB folder itself (%AppData%\Local\Microsoft\
Internet Explorer\Indexed DB\Internet.edb), it appears that Internet Explorer
still tries to process the information but the Internet.edb file doesn’t grow
in size.

usIng IndexeddB

All IndexedDB functionality is accessed through the window.indexedDB
object, which is an IDBFactory object containing an open and a
deleteDatabase method (there is also a cmp method available for
comparing two keys).

Every operation with IndexedDB is asynchronous: you make a request for
something to happen and you’re returned an IDBRequest object. You then
attach to the IDBRequest object’s onerror and onsuccess event handlers to
act on the results when they become available.

The IDBFactory’s open and deleteDatabase methods return an
IDBOpenDBRequest object, which is derived from the IDBRequest
object and provides two additional event handlers: onblocked and
onupgradeneeded.

Opening a database
To open a database, or to create one if it doesn't already exist, we simply
call the open method of the window.indexedDB object and specify the
desired database name.

The open method accepts a version number for the second parameter and
will default to 1 if the database doesnt't exist (if a database doesn't exist,
when open is called, the database gets created). If specified, the version
number must be greater than 0.

If the request to open a database was successful, the event object passed
into the onsuccess event handler will contain an IDBDatabase object which
we can then use to manipulate the objects in the database.

The following is an example of how you request that a database be opened:

var g_db = null;
var dbRequest = window.indexedDB.open(“Example”);
dbRequest.onerror = function (evt) {
alert(“Database error: “ + evt.target.error.name);
}
dbRequest.onsuccess = function (evt) {
g_db = evt.target.result; // IDBDatabase object
}

Creating an Object Store
Each database can have one or more object stores which hold your records
as key/value pairs. Each object store has a name and the name must be
unique within the database.

The records within an object store are sorted in ascending order based on
the keys and each key must be unique for that object store.

Each object store has an optional key generator and an optional key path.
If you specify a key path, the object store is said to use in-line keys (the
key is stored as part of the value). If you don't specify a key path, the object
store is said to use out-of-line keys (the key is stored separately from the
value that is being stored).

There are three ways that keys can be specified for an object store:

•	 A	key	generator	which	can	generate	a	monotonically	increasing		
number	every	time	a	key	is	needed

•	 Keys	can	be	derived	from	a	key	path
•	 Keys	can	be	explicitly	specified	when	data	is	being	added	to		

the	object	store

Each record in an object store has a value which can be primitives (string,
number, boolean, null, and undefined) as well as anything supported by the
structured clone algorithm which includes things like objects, arrays, dates,
and even files from the HTML5 File API.

When a database is first created, or when a version number is specified that
is higher than the current database version, an onupgradeneeded event
handler will be triggered as part of the database versionchange transaction.
If the upgradeneeded event is triggered, the onsuccess event handler of
the open database request, will only be triggered after the versionchange
transaction has completed.

The onupgradeneeded event handler is where all database structure
changes are performed, including the creation of object stores.
To create an object store, you need to call the createObjectStore method
on the IDBDatabase object which can be found in the event’s target.result
property of the onupgradeneeded event handler.

The following example illustrates how to create an object store called
“Employees” that will use a key path:

dbRequest.onupgradeneeded = function (evt) {
var db = evt.target.result;
var objectStore = db.createObjectStore(“Employees”, { keyPath:
“EmpId” });
}

Creating an index
Indexes allow you to look up of data within an object store using properties
of the values stored rather than just using the keys.

An index is a special object store for looking up records in another object
store (also known as a referenced object store). The records in an index
are automatically adjusted when items are added, updated, or deleted in
the referenced object store. Several indexes can reference the same object
store.

Indexes can also be used to enforce some database rules. For example, an
index contains a unique flag which, when set to true, can be used to prevent
having two records with the same value in an object store (an error would
be thrown if the result of an insert/update results in a duplicate value).

Indexes also contain a multiEntry flag which effects how an index behaves
when it comes to arrays. When set to false, a single record whose key is an
array is added to the index. When set to true, however, a record is added to
the index for each array item allowing you to filter on the individual items of
the array.
To create an index, you need to call the createIndex method on the
IDBDatabase object passing in a name for the index as the first parameter,
a keypath as the second parameter, and an optional third parameter object
indicating if the index is to be unique or not or if multiEntry is enabled or
not.

Since indexes modify the database structure, indexes must be created and
modified within the onupgradeneeded event handler as in the following
example:

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

3 HTML5: IndexedDB

DZone, Inc. | www.dzone.com

dbRequest.onupgradeneeded = function (evt) {
// ...object stores created...
/* Create an index so we can search by employee names. Multiple
employees might have the same name so we don’t want the index to
be unique */
objectStore.createIndex(“EmpName”, “EmpName”, { unique : false
});

/* Create an index to search employees by company email address.
Since, typically, no two employees would share the same work
email address, we can put a restriction on the records to enforce
that each record have a unique email address */
objectStore.createIndex(“EmpEmail”, “EmpEmail”, { unique : true
});
}

Starting a Transaction
All reading or modification of data within a database must happen within a
transaction.

The scope of a transaction is determined when the transaction is created
and is simply what object stores and indexes the transaction has access to.
A database can have multiple active transactions at once and, with
readonly transactions, any number of them can execute at the same time
even if they overlap scopes.

Unlike transactions of other database technologies, with IndexedDB, the
transactions are auto-committed if the call is successful (your code doesn’t
need to explicitly call a commit method). If an error is thrown, or the call is
explicitly aborted by code, then the transaction automatically rolls back.
A database can have multiple active transactions at once and, with
readonly transactions, any number of them can execute at the same time
even if they overlap scopes.

Be especially careful with readwrite transactions because, if the scope
overlaps, transactions will not execute at the same time. They will instead
be queued up which could slow down the responsiveness of your web
application.

There are three transaction modes available:

•	 readonly
•	 readwrite
•	 versionchange - This transaction is automatic when a database

is first created or when the version number is changed. We saw
this transaction in action earlier with the onupgreadeneeded event
handler which is triggered by this transaction.

To create a transaction we need to call the transaction method of our
IDBDatabase object, which will return us an IDBTransaction object.

The transaction method accepts two parameters. The first parameter is an
array of object store names that we want as part of the transaction. The
second parameter is optional and indicates the transaction mode we want.
If not specified, the second parameter defaults to readonly mode.

The following is an example of how you would create a readwrite
transaction on the Employees object store:

var dbTrans = g_db.transaction([“Employees”], “readwrite”);

Note:	Remember transactions are expected to be short-lived.

If a transaction takes too long, the browser may terminate it to free up the
storage resources that the transaction has locked.

Adding data to an object store
To add data to an object store, we could populate the object store during
the onupgradeneeded event handler since we're already in a transaction.
Because we would already have a reference to the object store, it's just a
matter of calling the object store's add method as in the following example:

dbRequest.onupgradeneeded = function (evt) {
// ...object stores and indexes created...
// Add the employee array items to the object store
for (var i in arrEmployees) {
objectStore.add(arrEmployees[i]);
}
}

Adding records to an object store during the upgradeneeded event is fine
when the database is being created or upgraded but what about when the
database already exists and we don’t need to update the version?

To add a record to an object store, we first need to obtain a readwrite
transaction on the object store we wish to add data to by calling the
transaction method on our IDBDatabase object.

Once we have the IDBTransaction object we can call that object’s
objectStore method requesting one of the object stores that we specified
when we called the transaction method.

The objectStore method returns us an IDBObjectStore object which we can
then use to call the add method to request our object be inserted as in the
following example:

var objEmployee = { “EmpId”: “101”, “EmpName”: “Sam Smith”,
“EmpEmail”: “SamSmith@SomeCompany.com” };
// Create a readwrite transaction for the Employees object store
var dbTrans = g_db.transaction([“Employees”], “readwrite”);
// Get the IDBObjectStore object for the Employees object store
var dbObjectStore = dbTrans.objectStore(“Employees”);
// Request the addition of our object to the object store
var dbAddRequest = dbObjectStore.add(objEmployee);
dbAddRequest.onsuccess = function (evt) { alert(“Success!”); }
dbAddRequest.onerror = function (evt) { /* handle the error */ }

There is also a put method that can be used. The put method will act like
an add method if the record doesn’t exist yet but, if the record does exist,
the put method overwrites the existing record with the new data. The code
works exactly the same as in the above example with the exception that
you request a put rather than an add.

Both the add and put requests accept an optional second parameter which
is how you would specify the key for the record if you’re not using inline
keys.

Querying data
Requesting a record from an object store is very similar to adding it to the
object store: You create your transaction (a readonly transaction will do in
this case), request the object store object, and then request the record as in
the following example:

/* Since the 2nd parameter of the transaction method is optional
and defaults to “readonly” we’ve left it out to reduce code.
Also, since we don’t need the IDBTransaction object after we call
the objectStore method we can chain the calls together and not
bother storing the transaction object to a variable */
var dbObjectStore = g_db.transaction([“Employees”]).
objectStore(“Employees”);
// A Get is based on the key. In our case, it’s the EmpId value
var dbGetRequest = dbObjectStore.get(“101”);
dbGetRequest.onsuccess = function (evt) {
alert(“Success! The employee’s name: “ + evt.target.result.
EmpName); }
dbGetRequest.onerror = function (evt) { /* handle the error */ }

Using a cursor
A get is useful if you only want one record and you know the key value of
the record you're looking for.

If you wish to iterate over multiple records, perhaps to build up a list of
items for display, you’ll need to use a cursor.

Note: If you wish to loop over records in search of a specific record, cursors
are not the recommended approach. See the “Using an Index” section
which will discuss using cursors on indexes.

As with a get request, to use a cursor you must first create a transaction
and then obtain the object store object which you can then call the

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

4 HTML5: IndexedDB

DZone, Inc. | www.dzone.com

openCursor method on.

The first parameter of openCursor method is an optional key range which is
used to restrict the number of records returned (if not specified, all records
from the object store are returned).

You can create a key range object by calling one of the following methods
on the IDBKeyRange object: only, lowerBound, upperBound, and bound.
The second parameter of openCursor is also optional and specifies the
direction that you will iterate over the results: “next” is for ascending order
which is the default and “prev” is for descending order.

If you want to specify the second parameter without having to specify the
first one, you can pass in a null for the first parameter.

The following is an example of using a cursor to loop over an entire object
store’s records (no range filter and using the default direction):

var dbCursorRequest = dbObjectStore.openCursor();
dbCursorRequest.onsuccess = function (evt) {
var curCursor = evt.target.result;
if (curCursor) {
/* Grab the current employee object from the cursor’s value
property (we could also grab the key) */
var objEmployee = curCursor.value;
// ...do something with objEmployee...

// Cause onsuccess to fire again with the next item
curCursor.continue();
} // End if
}
dbCursorRequest.onerror = function (evt) { /* handle the error */
}

A few notes about cursors:

• To move to the next record in the object store, you call the continue
method of the cursor object which will cause the onsuccess event
handler to fire again for the next record.

• If there are no more records in the object store, the cursor will be
undefined. You will need to test for this condition before trying to
access the key or value.

Using an index
If you ever need to look for records based on a value other than the key, it's
much more efficient to use an index.

You can request a get on an index which will return you a single record.
Even if there are multiple records for the search value, you will always get
the record with the lowest key value.

The following is an example of doing a get request on an index:

var dbIndex = dbObjectStore.index(“EmpName”);
var dbGetRequest = dbIndex.get(“Sam Smith”);
dbGetRequest.onsuccess = function (evt) {
var objEmployee = evt.target.result;
/* do something with the result */
}

If you want to take advantage of the better performance of indexes but
still need to loop over multiple records, you have an option of two different
types of cursors.

The standard index cursor behaves the same as a normal cursor, where the
value returned is the whole object from the object store. The following is an
example of how you obtain a standard index cursor:

var dbCursorRequest = dbIndex.openCursor();
dbCursorRequest.onsuccess = function (evt) {
var curCursor = evt.target.result;
if (curCursor) {
/* Grab the current employee object from the cursor’s value
property (we could also grab the key). Do something with the
object */
var objEmployee = curCursor.value;

// Cause onsuccess to fire again with the next item
curCursor.continue();
} // End if
}

The other type of cursor that’s possible on an index is a key cursor where
the cursor’s key is the index value and the cursor’s value is the object
store’s key. For example:

var dbCursorRequest = dbIndex.openKeyCursor();
dbCursorRequest.onsuccess = function (evt) {
var curCursor = evt.target.result;
if (curCursor) {
/* curCursor.key will hold a value like “Sam Smith”
curCursor.value will hold the record’s key (e.g. “101” in our
case) */

// Cause onsuccess to fire again with the next item
curCursor.continue();
} // End if
}

With both types of index cursors you can specify a key range filter like you
can with normal cursors.

You can also specify the direction like you can with normal cursors but,
in this case, you can make use of two additional values on indexes when
those indexes are not specified as unique: “nextunique” and “prevunique”
(filters the returned records to just unique items)

Deleting data
To delete records from an object store there are a couple of options
available.

The first option is to use a delete request on the object store requesting
that a specific record be deleted (bear in mind that the transaction shown in
the examples below need to be set to readwrite):

var dbDeleteRequest = dbObjectStore.delete(“101”);
dbDeleteRequest.onsuccess = function(evt){ /* record is gone */ }
dbDeleteRequest.onerror = function(evt){}

The other option is to use the clear request on the object store requesting
that all records within the object store be deleted along with any index
records that reference the object store:

var dbClearRequest = dbObjectStore.clear();
dbClearRequest.onsuccess = function(evt){ /* records are gone */
}
dbClearRequest.onerror = function(evt){}

Handling errors
Most documentation you will find online about the IDBRequest onerror
event handlers will tell you that you need to access the errorCode value.
This is no longer the case.

The event's target value now holds an error object, which is a DOMError
object. Rather than errorCode you now have access to the name property
of the error object as in the following example:

dbRequest.onerror = function (evt) {
alert(“Error: “ + evt.target.error.name);
}

Aside from the onerror handlers of the IDBRequest object, it’s also very
important to wrap your database code in a try/catch statement since
several actions will throw exceptions even if you have set up error event

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

5 HTML5: IndexedDB

DZone, Inc. | www.dzone.com

handlers.

For example, you will receive a ConstraintError exception if you try to create
the same index twice which gets by the onerror handler and shows up
in the console window (if your user is using IE and has IE set up to show
errors, the user will receive a prompt with the error).

The W3C specification lists some common exceptions, if you’re
interested in knowing what could trigger one: http://www.w3.org/TR/
IndexedDB/#exceptions.

Closing a database connection
A database can be closed in several ways, including by the garbage
collector or if the user navigates away from your page.

You can explicitly close a database connection by calling the close method
on the IDBDatabase object as in the following example:

/* g_db is a global object holding the evt.target.result value
(our IDBDatabase object) from the onsuccess event handler when we
called window.indexedDB.open */
g_db.close();

AdvAnced usAge

Upgrading an existing database to a new version
To upgrade an existing database to a new version we need to specify a
version number that is higher than the current database version when we
open the database which will trigger the onupgradeneeded event handler.

The parameter received by the event handler will hold two values
oldVersion and newVersion which can help your upgrade code know what
code needs to run in order to bring the database up to the current version.

var dbRequest = window.indexedDB.open(“Example”, 2);
dbRequest.onupgradeneeded = function (evt) {
if (evt.oldVersion < 1) {
// create objects for version 1
}
// other version upgrade paths
}

Deleting an object store
Deleting an object store is a modification to the database structure and
needs to be handled within the onupgradeneeded event handler.

To delete an object store, it’s simply a matter of calling the
deleteObjectStore method on the IDBDatabase object, specifying the name
of the object store that you want deleted, as in the following example:

dbRequest.onupgradeneeded = function (evt) {
var db = evt.target.result;
db.deleteObjectStore(“Employees”);
}

Deleting a database
If you ever need to delete a database, this can be accomplished by
requesting a deleteDatabase on the IDBFactory object as in the following
example:

var dbRequest = window.indexedDB.deleteDatabase(“Example”);
dbRequest.onsuccess = function(evt){ /* database is gone */ }
dbRequest.onerror = function(evt){}

IndexedDB from within Web Workers
One nice feature with IndexedDB is that it's available to you from within a
web worker rather than just from the UI thread!

Since there is no global 'window' object in a web worker, the approach used
to access the indexedDB object needs to be modified slightly to use the
global self instead.

The following example shows how you would work with IndexedDB from

within a worker:

// Use ‘self’ instead of ‘window’ when in a worker
var g_db = null;
var dbRequest = self.indexedDB.open(“Example”);
dbRequest.onerror = function (evt) {
// Tell the UI thread about the error
self.postMessage(“Database error: “ + evt.target.error);
}
dbRequest.onsuccess = function (evt) {
g_db = evt.target.result;
}
dbRequest.onupgradeneeded = function (evt) {
// Create an objectStore to hold Employee information
evt.target.result.createObjectStore(“Employees”, { keyPath:
“EmpId” });
}

Aborting a transaction
If for some reason you need to abort a transaction and rollback any
changes, you can do so at any point before the transaction finishes,
including if he transaction isn't currently active or hasn't started yet, by
calling abort on the transaction object.

The following is an example of calling abort on a transaction:

var dbTrans = g_db.transaction([“Employees”], “readwrite”);
var dbObjectStore = dbTrans.objectStore(“Employees”);
var dbAddRequest = dbObjectStore.add(objEmployee);
/* ...success and error handlers... */
dbTrans.abort();

Success events don’t bubble and can’t be cancelled, but error events do
bubble and may be cancelled.

Error events will abort the transaction in which they occur unless they’re
cancelled by calling preventDefault().

I would generally recommend against canceling an error so that a
transaction doesn’t abort: if there’s an error, typically it’s because there’s a
problem, and you could end up with bad data in your database.

That said, you might run across special cases where certain errors are
acceptable and you may simply log the error allowing the transaction to
continue.

Viewing the data in an IndexedDB
Currently, the only browser with built-in tools to view the contents of an
IndexedDB database is Google Chrome.

In Chrome, if you open up the Developer Tools (Tools, Developer Tools
menu or by pressing Ctrl+Shift+I), you’ll find a Resources tab with an
IndexedDB item that you can expand to explore any databases currently
held by your browser.

The following Microsoft website details a small web application allowing
you to explore IndexedDB databases in other browsers like Internet
Explorer:

http://blogs.msdn.com/b/ie/archive/2012/01/25/debugging-indexeddb-
applications.aspx

Known Issues

For security reasons, IndexedDB will only work for websites using http or
https. Browsers will not allow a local file (file://) to use IndexedDB.

The only exception to the local file restriction is when IndexedDB is
accessed from the JavaScript of a Windows 8 application (ms-wwa or ms-
wwa-web protocols in Internet Explorer)

Like with any other data stored in the browser, the user has the ability to
remove your databases by deleting the cookies and other local browser
data.

This could be a bit of an edge case, but it may also help in determining why
IndexedDB isn’t working for one user when it works for others: It is possible
to disable IndexedDB in Internet Explorer, Chrome, and Firefox:

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com

Browse our collection of over 150 Free Cheat Sheets
Upcoming Refcardz

Free PDF

6 HTML5: IndexedDB

DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome

refcardz@dzone.com

Sponsorship Opportunities

sales@dzone.com

Copyright © 2013 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“"DZone is a developer's dream",” says PC Magazine.

• In IE, the setting can be found in Internet Options on the General
tab. The Settings button brings up a Website Data Settings window.
Click on the Caches and Databases tab and you will find an ‘Allow
website caches and databases’ checkbox. This checkbox needs to
be on to support IndexedDB in IE.

• In Firefox, if you enter about:config in the address bar, one of
the settings you will find is dom.indexedDB.enabled. If the value
column is set to false, double-click on the row to toggle the value
to true.

• In Chrome, if you open up Settings and then show the advanced
settings, you will find a Privacy Settings section with a ‘Content
settings...’ button. Clicking that button brings up a window with a
Cookies section at the top. ‘Allow local data to be set’ needs to be
enabled.

exAmple code

Some sample code has been written to show a possible real-world use
case of IndexedDB and can be found in the following GitHub repository:
https://github.com/cggallant/IndexedDB

resources

http://caniuse.com/ can help you discover which browsers support
a particular feature and in which browser version the feature became
available.

As mentioned earlier in this article, the following is a link to a special
JavaScript shim that mimics the IndexedDB API in browsers that only
support the deprecated HTML5 Web SQL API: http://nparashuram.com/

IndexedDBShim/

Of the browsers that support IndexedDB, only the BlackBerry 10 browser
still uses vendor prefixes for IndexedDB which is a good sign since browser
vendors usually don’t remove the vendor prefixes from new technologies
until they are fairly certain that there won’t be any more major changes to
the specification. That said, IndexedDB is still a working draft and some
aspects may still change in time. If you find that what you read in books
or on the internet is not working as you expect, I find it’s often easier to
go back to the source and read the latest published version of the W3C
specification: http://www.w3.org/TR/IndexedDB/

Due to the fast pace of browser updates, information and tutorials on
HTML5 often grows outdated quite quickly. I recommend reading the
HTML5 specifications first, if possible, but because specifications are
sometimes difficult to understand, I try to cross-reference what I read in the
specifications with various articles and by writing test code.

I’ve found the following sites helpful in understanding some of the fine
details of various technologies:

• Mozilla Developer Network: https://developer.mozilla.org/en-US/
docs/HTML/HTML5

• HTML5 Zone: www.DZone.com/mz/html5

Programming HTML5 Applications shows you how
to take web application development seriously.
Includes detailed tutorials on the whole spectrum
of HTML5 technologies, including an extensive
section on IndexedDB.

BUY NOW!

Gerard Gallant is a Senior Software Developer /
Software Architect with Dovico Software. For over a
decade, he has played a major role in developing most
software products released by Dovico ranging from the
creation of the Microsoft Project link ActiveX control
to the creation of the new Hosted Services API. He is
married with two beautiful and smart girls. He unwinds
by shooting hoops or watching a movie and also enjoys
traveling extensively. Recent publications can be found
on his blog: http://cggallant.blogspot.ca/

A B O U T T H e A U T H O R R e C O M M e n D e D B O O k

JavaScript Debugging
Cloud Application Patterns
jQuery Plugin Development
Wordpress

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
https://github.com/cggallant/IndexedDB
http://caniuse.com/
http://nparashuram.com/IndexedDBShim/
http://nparashuram.com/IndexedDBShim/
http://www.w3.org/TR/IndexedDB/
https://developer.mozilla.org/en-US/docs/HTML/HTML5
https://developer.mozilla.org/en-US/docs/HTML/HTML5
www.dzone.com/mz/html5
http://shop.oreilly.com/product/0636920015116.do
http://cggallant.blogspot.ca/
https://twitter.com/olivergierke/
http://shop.oreilly.com/product/0636920024767.do?sortby=publicationDate

