
Events Events is a module that can be mixed in to any object, giving the object the ability to bind and
trigger custom named events.

object.on(event, callback, [context])[context]) Bind a callback function to an object.on

object.off([event], [callback], [context]) Remove a previously-bound callback function from an object.off

object.trigger(event, [*args]) Trigger callbacks for the given event, or space-delimited list of events.trigger

Model Models are the heart of any JavaScript application, containing the interactive data as well as a
large part of the logic surrounding it: conversions, validations, computed properties, and access
control.
Backbone.Model.extend(properties, [classProperties]) To create a Model class of your own, you extend Backbone.Model and provide instance properties,

as well as optional classProperties to be attached directly to the constructor function.
extend

new Model([attributes]) When creating an instance of a model, you can pass in the initial values of the attributes, which will
be set on the model.

constructor / initialize

model.get(attribute) Get the current value of an attribute from the model.get

model.set(attributes, [options]) Set a hash of attributes (one or many) on the model.set

model.escape(attribute) Similar to get, but returns the HTML-escaped version of a model's attribute.escape

model.has(attribute) Returns true if the attribute is set to a non-null or non-undefined value.has

model.unset(attribute, [options]) Remove an attribute by deleting it from the internal attributes hash.unset

model.clear([options]) Removes all attributes from the model.clear

model.id A special property of models, the id is an arbitrary string (integer id or UUID).id

model.idAttribute A model's unique identifier is stored under the id attribute.idAttribute

model.cid A special property of models, the cid or client id is a unique identifier automatically assigned to all
models when they're first created.

cid

model.attributes The attributes property is the internal hash containing the model's state.attributes

model.defaults or model.defaults() The defaults hash (or function) can be used to specify the default attributes for your model.defaults

Collection Collections are ordered sets of models.

model.toJSON() Return a copy of the model's attributes for JSON stringification.toJSON

model.fetch([options]) Resets the model's state from the server.fetch

model.validate(attributes) Validate is called before set and save, and is passed the attributes that are about to be updated.validate

model.isValid() Call model.isValid() to check if the model is currently in a valid state, according to your validate
function.

isValid

model.url() Returns the relative URL where the model's resource would be located on the server.url

model.parse(response).url() Parse is called whenever a model's data is returned by the server, in fetch, and save.parse

model.clone() Returns a new instance of the model with identical attributes.clone

model.isNew() If the model does not yet have an id, it is considered to be new.isNew

model.change() Manually trigger the "change" event and a "change:attribute" event for each attribute that has
changed.

change

model.hasChanged([attribute]) Has the model changed since the last "change" event?hasChanged

model.changedAttributes([attributes]) Retrieve a hash of only the model's attributes that have changed.changedAttributes

model.previous(attribute) During a "change" event, this method can be used to get the previous value of a changed attribute.previous

Backbone.Collection.extend(properties, [classProperties]) To create a Collection class of your own, extend Backbone.Collection, providing instance properties,
as well as optional classProperties to be attached directly to the collection's constructor function.

extend

model.previousAttributes() Return a copy of the model's previous attributes.previousAttributes

collection.model Override this property to specify the model class that the collection contains.model

model.urlRoot Specify a urlRoot if you're using a model outside of a collection, to enable the default url function
to generate URLs based on the model id.

urlRoot

model.destroy([options]) Destroys the model on the server by delegating an HTTP DELETE request to Backbone.sync.destroy

model.save([attributes], [options]) Save a model to your database (or alternative persistence layer), by delegating to Backbone.sync.save

Router Router provides methods for routing client-side pages, and connecting
them to actions and events.

new Collection([models], [options]) When creating a Collection, you may choose to pass in the initial array of models. The collection's
comparator function may be included as an option.

constructor / initialize

collection.models Raw access to the JavaScript array of models inside of the collection.models

collection.toJSON() Return an array containing the attributes hash of each model in the collection.toJSON

collection.add(models, [options]) Add a model (or an array of models) to the collection.add

collection.remove(models, [options]) Remove a model (or an array of models) from the collection.remove

collection.get(id) Get a model from a collection, specified by id.get

collection.getByCid(cid) Get a model from a collection, specified by client id.getByCid

collection.at(index) Get a model from a collection, specified by index.at

collection.length Like an array, a Collection maintains a length property, counting the number of models it contains. length

collection.comparator If you define a comparator, it will be used to maintain the collection in sorted order.comparator

collection.sort([options]) Force a collection to re-sort itself.sort

collection.pluck(attribute) Pluck an attribute from each model in the collection.pluck

collection.url or collection.url() Set the url property (or function) on a collection to reference its location on the server.url

collection.parse(response) Parse is called by Backbone whenever a collection's models are returned by the server, in fetch.parse

Backbone.Router.extend(properties, [classProperties]) Define actions that are triggered when certain URL fragments are matched.extend

router.routes The routes hash maps URLs with parameters to functions on your routerroutes

new Router([options]) When creating a new router, you may pass its routes hash directly as an option, if you choose.constructor / initialize

collection.fetch([options]) Fetch the default set of models for this collection from the server, resetting the collection when fetch

collection.reset(models, [options]) Adding and removing models one at a time is all well and good, but sometimes you have so many
models to change that you'd rather just update the collection in bulk.

reset

collection.create(attributes, [options]) Convenience to create a new instance of a model within a collection.create

History History serves as a global router (per frame) to handle hashchange events or pushState, match
the appropriate route, and trigger callbacks.

router.route(route, name, [callback]) Manually create a route for the router.route

router.navigate(fragment, [options]) Call navigate in order to update the URL.navigate

Backbone.history.start([options]) Call Backbone.history.start() to begin monitoring hashchange events, and dispatching routes.start

Sync Sync is the function that Backbone calls every time it attempts to read or save
a model to the server.

Backbone.emulateHTTP = trueemulateHTTP

Backbone.emulateJSON = trueemulateJSON

View The general idea is to organize your interface into logical views, backed by models, each of which
can be updated independently when the model changes, without having to redraw the page.

Backbone.View.extend(properties, [classProperties])extend

new View([options])constructor / initialize

All views have a DOM element at all times (the el property)

A cached jQuery (or Zepto) object for the view's element.

view.elel

view.elel

Call setElement to apply a Backbone view to a different DOM element.

A hash of attributes that will be set as HTML DOM element attributes on the view's el.

view.setElement(element)setElement

view.attributesattributes

Function that runs queries scoped within the view's element.

Override this function with your code that renders the view template from model data, and
updates this.el with the new HTML.

view.$(selector)$ (jQuery or Zepto)

view.render()render

Utility

view.remove() Convenience function for removing the view from the DOM.remove

view.make(tagName, [attributes], [content]) Convenience function for creating a DOM element of the given type (tagName).make

delegateEvents([events]) Uses jQuery's delegate function to provide declarative callbacks for DOM events within a view.delegateEvents

undelegateEvents() Removes all of the view's delegated events.undelegateEvents

var backbone = Backbone.noConflict(); Returns the Backbone object back to its original value.noConflict

Backbone.setDomLibrary(jQueryNew); Tell Backbone to use a particular object as it's DOM / Ajax library.setDomLibrary

igloolab.com

