

DZone, Inc. | www.dzone.com

By Mike Keith

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 J

PA
 2

.0

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#127

CONTENTS INCLUDE:
n	 Whats New in JPA 2.0
n	 JDBC Properties
n	 Access Mode
n	 Mappings
n	 Shared Cache
n	 Additional API and more...

Getting Started with
 JPA 2.0

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://answerhub.com

DZone, Inc. | www.dzone.com

G
et

 M
o

re
 R

ef
ca

rd
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#173
C

o
re

 J
S

O
N

By Tom Marrs

The Fat-Free Alternative to XML

JSON Overview

JSON (JavaScript Object Notation) is a standard text-based data
interchange format that enables applications to exchange data over a
computer network. Programs written in Ruby, Java/EE, JavaScript, C#/.
Net, PHP, etc. can easily consume and produce JSON data because it is
independent of languages and computing platforms. The abundance of
JSON-related APIs and tools make it easy to use JSON from your favorite
programming language, IDE, and runtime environment. Additionlly, popular
NoSQL databases such as MongoDB and CouchBase are based on JSON.

JSON was created by Douglas Crockford in 2001, and is specified in RFC
4627 with the IETF (Internet Engineering Task Force) standard; see http://
tools.ietf.org/html/rfc4627. Per the specification, the JSON’s IANA (Internet
Assigned Numbers Authority) media type is application/json, and the
file type is
.json.

What is JSON?
JSON is a simple data format, and has 3 basic data structures:

•	 Name/Value (or Key/Value) Pair.
•	 Object.
•	 Arrays.

A valid JSON document is always surrounded with curly braces, like this:

{ JSON-Data }

Please note that some members of the JSON community use the term
“string” rather than “document.”

Why JSON?
JSON is gradually replacing XML as the preferred data exchange format
on the internet because JSON is easy to read and its structures map to
common programming concepts such as Objects and Arrays. JSON is
more efficient (i.e., faster parsing and network transmission) than XML
because JSON is more compact—there are no begin and end tags.

Name/Value Pair
A Name/Value pair looks like this:

{
 “firstName”: “John”
}

A property name (i.e., firstName) is a string that is surrounded by double
quotes. A value can be a string (as in the above example), but this is just
one of several valid data types. (Please see the Data Types section for
further details.) Some well-known technologies claim that they use JSON
data formats, but they don’t surround their strings with quotes. However,
this is not valid JSON; see the JSON Validation section.

Object
An Object is a collection of unordered Name/Value pairs. The following
example shows an address object:

{
 “address” : {
 “line1” : “555 Main Street”,
 “city” : “Denver”,
 “stateOrProvince” : “CO”,
 “zipOrPostalCode” : “80202”,
 “country” : “USA”
 }
}

An Object (in this case address) consists of comma-separated name/
value pairs surrounded by curly braces.

Array
An Array is a collection of ordered values, and looks like this:

{
 “people” : [
 { “firstName”: “John”, “lastName”: “Smith”, “age”: 35 },
 { “firstName”: “Jane”, “lastName”: “Smith”, “age”: 32 }
]
}

Value Types
A Value (i.e., the right-hand side of a Name/Value Pair) can be one of the
following:

•	 Object
•	 Array
•	 String
•	 Number
•	 Boolean
•	 null

Number
A number can be an integer or double-precision float. Here are some
examples:

“age”: 29
“cost”: 299.99
“temperature”: -10.5
“speed_of_light”: 1.23e11
“speed_of_light”: 1.23e+11
“speed_of_light”: 1.23E11
“speed_of_light”: 1.23E+11

The property name (i.e., age, etc.) is a string surrounded by double quotes,
but the value does not have quotes. A number can be prefixed by a minus
sign. The exponent portion (denoted by e or E) comes after the number
value, and can have an optional plus or minus sign. Neither leading zeroes,
octal, nor hexadecimal values are allowed.

CONTENTS INCLUDE:

❱ JSON Validation

❱ JSON Modeling

❱ JSON in the Browser

❱ JSON and Ajax

❱ JSON and Java

❱ JSON and Ruby...and More!

Core JSON

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4627
mailto:info@cloudbees.com
http://answerhub.com

2 Core JSON

DZone, Inc. | www.dzone.com

Boolean
A Boolean in JSON can either be true or false, as follows:

{
 “emailValidated” : true
}

The property name (emailValid) is a string surrounded by double
quotes, but the value (true) does not have quotes.

null
Although technically not a data type, null is a special value to indicate that
a data element has no value. In the following example, the age field has no
value (possibly because the user chose not to enter this information):

{
 “age” : null
}

Comments
JSON does not allow comments. Comments were originally a part of JSON,
but developers misused them by putting parsing directives in comments.
When Douglas Crockford saw this practice, he removed comments from
JSON to preserve interoperability between computing platforms.

Style
You’ve probably noticed that the property names (i.e., the name on the left-
hand side of the colon) use camel case. This is not a rule or standard, but
is a convention prescribed in Google’s JSON Style Guide at: http://google-
styleguide.googlecode.com/svn/trunk/jsoncstyleguide.xml.

Official Syntax
Douglas Crockford’s JSON site (http://www.json.org) provides a full
description of JSON syntax.

Additionally, the JSON Pro Quick Guide (freely available in the iPhone App
Store) provides examples and an overview of JSON syntax.

JSON Validation

A textual document MUST follow the JSON syntax rules to be considered
a valid JSON document. Valid JSON is important because it ensures
interoperability between applications and JSON-related tools. Although
the JSON.org web site shows JSON syntax, sometimes it’s easier to see
JSON validation in action. JSONLint (http://www.jsonlint.com) provides an
interactive, web-based JSON validator. To use it, type or paste some text
into the main text area and press the Validate button. If the text isn’t valid
JSON, you’ll see an error message as follows:

In this case, the property name for the address Object is missing a
closing double quote. After you fix this problem and press the Validate
button, JSONLint pretty-prints the JSON document as follows:

JSONLint is also available as a Chrome extension in the Chrome Web Store.

JSON Modeling

Developing valid JSON documents for real applications can be tedious and
error-prone. To avoid typographical errors, you can use JSONPad, JSON
Editor Online, and JSON Designer to create a logical model (similar to UML)
and generate valid JSON documents.

JSONPad
JSONPad (from http://www.jsonpad.com/en/Home.html) is a GUI tool
that eliminates typing JSON text by providing an interface that enables you
to create Objects, Keys (i.e., Name/Value Pairs), and Arrays. JSONPad is
available as a Windows or Mac GUI, and online at the JSONPad web site.
To create a model, use the green plus key under the text area. The following
data types are supported: Key (i.e., Name/Value Pair), Object, and Array.
After the model is complete, press the blue up-arrow button (under the
Tree tab) to generate a valid, pretty-printed JSON document based on the
model:

The end result is a valid JSON document that is usable in your application.
You can also generate a model by pasting JSON text into the text area and
pressing the green down arrow in the Tree tab. Under the Format tab, you
can either compress or pretty print a JSON document. JSONPad validates
the JSON document in the text are when you press the JSON button in the
Tools tab.

JSON Editor Online
JSON Editor Online (http://jsoneditoronline.org/) is an online JSON modeler,
and is also available as a Chrome extension.

JSON in the Browser

Firefox and Chrome provide excellent extensions (i.e., add-ons and plugins)
that make it easier to work with JSON.

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://google-styleguide.googlecode.com/svn/trunk/jsoncstyleguide.xml
http://google-styleguide.googlecode.com/svn/trunk/jsoncstyleguide.xml
http://www.json.org
https://itunes.apple.com/us/app/json-pro-quick-guide/id454037729?mt=8
http://json.org
http://www.jsonlint.com
http://www.jsonpad.com/en/Home.html
http://jsoneditoronline.org/

3 Core JSON

DZone, Inc. | www.dzone.com

REST Client
Rest Client is a Firefox extension that provides the ability to debug and
test RESTful Web Services from the browser. The ability to test from the
browser isn’t new, but the output formatting is much more readable.

The above example uses the Books service from the Open Library API.
After entering the service URI, the Response Body (Highlight) tab shows the
JSON output.

Pretty Printing with JSONView
JSON is not very readable when displayed natively in a browser. JSONView
is a Firefox and Chrome extension that pretty-prints JSON.

JSONView in Firefox
After installing this extension and re-starting Firefox, the JSON response
from the Open Library Books service URI is readable, and you can expand/
collapse objects on the page:

JSONView in Chrome
JSONView is also available as a Chrome extension from the Chrome Web
Store:

Click on the minus sign to collapse each element, and press the Toggle
Collapsed link to show/hide each collapsed element.

The JSONView Chrome extension provides a bit more functionality than its
Firefox counterpart – it enables a user to search a JSON document using
the JSONQuery language. For example, entering ..bib_key in the Query
text box displays all the bib_key fields in the text:

JSONQuery is one of several technologies that can search JSON
documents and return the desired element(s).

JSON Beautification with JSON SH
JSON SH is a Chrome extension (available in the Google Chrome Web
Store) that acts as a pretty-printer and a validator. Paste a valid (but not
pretty) JSON document into the text area at the top of the page, and JSON
SH beautifies the text into a human-readable format.

JSON and AJAX

AJAX (Asynchronous JavaScript and XML) was one of the original use
cases for JSON, and the following jQuery example shows how a JavaScript
client makes an HTTP Get request to a RESTful Web Service and processes
a JSON response:

$.getJSON(‘http://example/service/addresses/home/1’,
 function(data) {
 var address = JSON.parse(data);

 console.log(“Address Line 1 = “ + address.line1);
 }
);

In the code above, $.getJSON() (a shorthand version of the main
jQuery $.ajax() call) makes an HTTP GET request. The (anonymous)
success callback function receives the JSON response and parses it into
a JavaScript object using JSON.parse(), which is part of the ECMA-
262 standard (beginning with the 5th edition) – please see http://www.
ecmascript.org/ for further information). The console.log() method
then logs line 1 of the address to the browser console. Conversely, the
JSON.stringify() method converts a JavaScript value to a JSON string
(with optional pretty-printing).

JSON and Java

The Jackson (http://jackson.codehaus.org/) library is a popular Java-based
JSON API. Here’s an example of how to marshal/unmarshal an Address
object to/from JSON:

import java.io.Writer;
import java.io.StringWriter;
import org.codehaus.jackson.map.ObjectMapper;

public class Address {
 private String line1;
 private String city;
 private String stateOrProvince;
 private String zipOrPostalCode;
 private String country;

 public Address() {}
	
 public String getLine1() {
 return line1;
 }			 <!---Snippet con’t on next page-->

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.sitepen.com/blog/2008/07/16/jsonquery-data-querying-beyond-jsonpath/
http://www.ecmascript.org/

4 Core JSON

DZone, Inc. | www.dzone.com

 public void setLine1(line1) {
 this.line1 = line1;
 }
	
 // Remaining getters and setters ...
}

Address addrOut = new Address();
// Call setters to populate addrOut …

ObjectMapper mapper = new ObjectMapper(); // Reuse this.

// Marshal Address object to JSON String.
Writer writer = new StringWriter();
mapper.writeValue(writer, addrOut);
System.out.println(writer.toString());

// Unmarshal Address object from JSON String.
String addrJsonStr =
“{“ +
 “\”address\” : {“ +
 “\”line1\” : \”555 Main Street\”,” +
 “\”city\” : \”Denver\”,”
 “\”stateOrProvince\” : \”CO\”,”
 “\”zipOrPostalCode\” : \”80202\”,” +
 “\”country\” : \”USA\”” +
 “}” +
“}”;

Address addrIn = mapper.readValue(addrJsonStr, Address.class);

In addition to Jackson, other well-known Java-based JSON APIs include:

API Source

Google GSON http://code.google.com/p/google-json/

SOJO http://sojo.sourceforge.net/

org.json (by Douglas
Crockford)

http://www.json.org/java

json-lib http://sourceforge.net/projects/json-lib/

json-io http://code.google.com/p/json-io

jsontools http://jsontools.berlios.de/

jsonbeans http://code.google.com/p/jsonbeans/

JSON and Ruby

There are many JSON-related libraries for Ruby. Here’s an example using
the JSON gem that comes standard with Ruby.

require ‘json’

class Address

 attr_accessor :line1, :city, :state_or_province,
 :zip_or_postal_code, :country

 def initialize(line1=’’, city=’’, state_or_province=’’,
 zip_or_postal_code=’’, country=’’)
 @line1 = line1
 @city = city
 @state_or_province = state_or_province
 @zip_or_postal_code = zip_or_postal_code
 @country = country
 end

 def to_json
 to_hash.to_json
 end

 def from_json!(str)
 JSON.parse(str).each { |var, val| send(“#{var}=”, val) }
 end

 private

 def to_hash
 Hash[instance_variables.map { |var| [var[1..-1].to_sym,
 send(var[1..-1])] }]
 end
end

The JSON gem’s to_json method converts a String or Hash to JSON. The
Address object’s to_json method converts an Address to JSON format
by converting its data members to a Hash and then calling to to_json on
the Hash. To convert the Address to JSON, do the following:

addr1 = Address.new(‘555 Main Street’, ‘Denver’, ‘CO’, ‘80231’,
‘US’)
puts addr1.to_json

Outputs the following …
{“line1”:”555 Main Street”,”city”:”Denver”,”state_or_
province”:”CO”,”zip_or_postal_code”:”80231”,”country”:”US”}

The JSON gem’s JSON.parse method converts a JSON String to a Hash.
The Address object’s from_json! method takes a JSON String, calls
JSON.parse to convert to a Hash, and sets each corresponding data
member from the Hash as follows:

json_addr = <<END
{
 “line1” : “999 Broadway”, “city” : “Anytown”,
 “state_or_province” : “CA”, “zip_or_postal_code” : “90210”,
 “country” : “USA”
}
END

addr2 = Address.new
addr2.from_json!(json_addr)

In addition to the JSON gem, other JSON-related gems include:

API Source

ActiveSupport JSON http://api.rubyonrails.org/classes/
ActiveSupport/JSON.html

Yajl https://github.com/brianmario/yajl-ruby

Oj https://github.com/ohler55/oj

JSON and Ruby on Rails

Ruby on Rails provides additional functionality that makes it easier
to convert Ruby objects to JSON. The following controller uses the
ActionController’s render method to output an Address object to JSON:

class Person
 attr_accessor :first_name, :last_name

 def initialize(first_name=nil, last_name=nil)
 @first_name = first_name
 @last_name = last_name
 end
end

class MyController < ApplicationController
 def index
 person = Person.new(‘John’, ‘Doe’)
 respond_to do |format|
 format.html # index.html.erb
 format.json { render :json => person}
 end
 end
end

The Rails ApplicationController takes care of marshalling/
unmarshalling objects to/from JSON, so there’s no need to write a to_
json method here.

JSON Schema

JSON Schema specifies the structure of a JSON document. JSON Schema
can be used to validate the content of JSON sent to/received from a
RESTful Web Service. JSON Schemas are written in JSON.

The main JSON Schema site can be found at: http://json-schema.org.
JSON Schema is a work in progress – the JSON Schema team has just
published version 0.4, which can be found at: http://tools.ietf.org/html/
draft-zyp-json-schema-04.

Some important JSON Schema constructs include:

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://jackson.codehaus.org/
http://code.google.com/p/google-json/
http://sojo.sourceforge.net/
http://www.json.org/java
http://sourceforge.net/projects/json-lib/
http://code.google.com/p/json-io
http://jsontools.berlios.de/
http://code.google.com/p/jsonbeans/
http://api.rubyonrails.org/classes/ActiveSupport/JSON.html
http://api.rubyonrails.org/classes/ActiveSupport/JSON.html
https://github.com/brianmario/yajl-ruby
https://github.com/ohler55/oj
http://json-schema.org
http://tools.ietf.org/html/draft-zyp-json-schema-04
http://tools.ietf.org/html/draft-zyp-json-schema-04

5 Core JSON

DZone, Inc. | www.dzone.com

Construct Description

type The data type object, array, string, number, etc.

$schema The URI that provides the schema version.

required true/false

id Data element id

properties Validation properties for a data element include type (see
above), minimum (minimum value), maximum (maximum
value), enum, etc.

Here is a sample JSON Schema for a portion of an online gift registry:

 “type”: “object”,
 “$schema”: “http://json-schema.org/draft-03/schema”,
 “id”: “#”,
 “required”: true,
 “properties”: {
 “registrants”: {
 “type”: “array”,
 “id”: “registrants”,
 “required”: true,
 “items”: {
 “type”: “object”,
 “required”: false,
 “properties”: {
 “address”: {
 “type”: “object”,
 “id”: “address”,
 “required”: true,
 “properties”: {
 “city”: {
 “type”: “string”,
 “id”: “city”,
 “required”: true
 },
 “country”: {
 “type”: “string”,
 “id”: “country”,
 “required”: false
 },
 “line1”: {
 “type”: “string”,
 “id”: “line1”,
 “required”: true
 },
 “line2”: {
 “type”: “string”,
 “id”: “line2”,
 “required”: false
 },
 “postalCode”: {
 “type”: “string”,
 “id”: “postalCode”,
 “required”: true
 },
 “premise”: {
 “type”: “string”,
 “id”: “premise”,
 “required”: true,
 “enum”: [
 “work”,
 “home”,
 “other”
]
 },
 “stateOrProvince”: {
 “type”: “string”,
 “id”: “stateOrProvince”,
 “required”: true
 }
 }
 },
		 “firstName”: {
 “type”: “string”,
 “id”: “firstName”,
 “required”: true
 },
 “lastName”: {
 “type”: “string”,
 “id”: “lastName”,
 “required”: true
 },

			 <!============Snippet con’t on next page------------------>

 “phoneNumber”: {
 “type”: “object”,
 “id”: “phoneNumber”,
 “required”: true,
 “properties”: {
 “channel”: {
 “type”: “string”,
 “id”: “channel”,
 “required”: true,
 “enum”: [
 “cell”,
 “work”,
 “home”
]
 },
 “number”: {
 “type”: “string”,
 “id”: “number”,
 “required”: true
 }
 }
 }
 }
 }
 }
 }
}

The above schema:

•	 Requires an array of registrant objects.
•	 Limits the phoneNumber.channel field to the following values:
cell, work, fax, or home.

•	 Limits the address.premise field to these values: home, work, or
other.

A Web Service consumer could use this schema to validate the following
JSON document:

{
 “registrants”: [
 {
 “firstName”: “Fred”,
 “lastName”: “Smith”,
 “phoneNumber”: {
 “channel”: “cell”,
 “number”: “303-555-1212”
 },
 “address”: {
 “premise”: “home”,
 “line1”: “555 Broadway NW”,
 “line2”: “# 000”,
 “city”: “Denver”,
 “stateOrProvince”: “CO”,
 “postalCode”: “88888”,
 “country”: “USA”
 }
 }
]
}

JSON Schema Generator
Creating a JSON Schema is tedious and error-prone. Use a JSON Schema
Generator to generate a Schema from any valid JSON document. Visit the
online JSON Schema Generator (www.jsonschema.net/) and generate a
schema by doing the following:

•	 Paste the JSON document into the right-hand text area.
•	 Choose the JSON Input option
•	 Press the Generate Schema button.

JSON Schema Validator
An application uses a JSON Schema Validator to ensure that a JSON
document conforms to the structure specified by the Schema. JSON
Schema Validators are available for most modern programming languages:

JSON Schema
Validator

Language Source

JSV JavaScript https://github.com/garycourt/JSV

Ruby JSON Schema
Validator

Ruby https://github.com/hoxworth/json-
schema

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
www.jsonschema.net/
https://github.com/garycourt/JSV
https://github.com/hoxworth/json-schema
https://github.com/hoxworth/json-schema

Browse our collection of over 150 Free Cheat Sheets
Upcoming Refcardz

Free PDF

6 Core JSON

DZone, Inc.
150 Preston Executive Dr.
Suite 201
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome

refcardz@dzone.com

Sponsorship Opportunities

sales@dzone.com

Copyright © 2012 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“"DZone is a developer's dream",” says PC Magazine.

JSON Schema
Validator

Language Source

json-schema-
validator

Java https://github.com/fge/json-
schema-validator

php-json-schema
(by MIT)

PHP https://github.com/hasbridge/php-
json-schema

JSON.Net .NET http://james.newtonking.com/
projects/json-net.aspx

Besides the language-specific tools, there is an excellent online JSON
Schema Validator at: http://json-schema-validator.herokuapp.com. To use
this site, enter the JSON document and Schema into the corresponding text
boxes and press the Validate button.

In Conclusion

We’ve covered the basics of JSON, but we’ve just scratched the surface.
Although JSON is a simple data format, there are many tools to streamline
the design and development process. JSON is a standard, it has replaced
XML as the preferred data interchange format on the Internet, and it
enables developers to create efficient, interoperable enterprise-class
applications.

Tom Marrs is a Principal Consultant/Architect at Ciber,
where he specializes in Service-Oriented Architecture
(SOA) He designs and implements mission-critical
web and business applications using the latest SOA,
Ruby on Rails, REST, HTML5, JavaScript, Java/EE, and
Open Source technologies. Tom is also the author
of the upcoming JSON at Work, and a founder of the
Denver Open Source User Group (DOSUG)

With JavaScript: The Good Parts, you’ll discover a
beautiful, elegant, lightweight and highly expressive
language that lets you create effective code, whether
you’re managing object libraries or just trying to get
Ajax to run fast. If you develop sites or applications for
the Web, this book is an absolute must.

Buy Here.

A B O U T the A uthors R eco m m ended B oo k

Debugging Patterns
Clean Code
Cypher
Object-Oriented JS

http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
https://github.com/fge/json-schema-validator
https://github.com/fge/json-schema-validator
https://github.com/hasbridge/php-json-schema
https://github.com/hasbridge/php-json-schema
http://james.newtonking.com/projects/json-net.aspx
http://james.newtonking.com/projects/json-net.aspx
http://denveropensource.org/
http://www.amazon.com/JavaScript-Good-Parts-Douglas-Crockford/dp/0596517742/ref=sr_1_1?s=books&ie=UTF8&qid=1359562381&sr=1-1&keywords=javascript+the+good+parts
http://www.amazon.com/dp/1449381561?tag=snaiinaturt-20&camp=14573&creative=327641&linkCode=as1&creativeASIN=1449381561&adid=1DVM4H6E887JXDVDN3WB&

