

Key Strategies for SOA Testing
Published by Mindreef® Inc.
22 Proctor Hill Road
Hollis, NH 03049
www.mindreef.com

Copyright © 2007 by Mindreef, Inc., Hollis, New Hampshire

No part of this publication may be reproduced, stored in a retrieval system or trans-
mitted in any form or by any means electronic, mechanical, photocopying, recording,
scanning or otherwise except as permitted under Sections 107 or 108 of the 1976
United States Copyright Act, without either the prior written permission of the Pub-
lisher, or authorization through payment of the appropriate per-copy fee to Mindreef,
Inc. Requests to the Publisher for permission should be addressed to the Legal Depart-
ment, Mindreef, Inc., 22 Proctor Hill Road, Hollis, NH 03049, (603) 465-2204, fax (603)
465-6583, or via email to: info@mindreef.com.

Trademarks: Copyright 2007 Mindreef, Inc. All rights reserved. Mindreef and SOAP-
scope are registered trademarks; Mindreef SOAPscope Server, Mindreef SOAPscope
Workstation, Mindreef Load Check, Mindreef Policy Rules Manager, Service Spaces,
Pseudocode View, and The SOA Quality Company are trademarks of Mindreef, Inc.
© Photographer: Vadim Rybakov | Agency: Dreamstime.com. All other trademarks
are the property of their respective owners.

ISBN 13: 978-0-615-17593-5

Manufactured in the United States of America

Mindreef, Inc., The SOA Quality Company™ | 22 Proctor Hill Road, Hollis, NH 03049
(603) 465-2204 | www.mindreef.com

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHORS MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OR FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND THE
STRATEGIES CONTAINED HEREIN MAYH NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
DISTRIBUTED AND/OR SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED
IN RENDERING LEGAL, ACCOUNTING OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL
ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL SHOULD BE SOUGHT.
NEITHER THE PUBLISHER NOR THE AUTHORS SHALL BE LIABLE FOR DAMAGES ARISING HERE-
FROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT
THE AUTHORS OR PUBLISHERS ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE
MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE
THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

David S. Linthicum is a Managing Partner at
ZapThink, LLC. He joined the firm through the
acquisition of Linthicum Group, LLC, a consult-
ing organization dedicated to excellence in SOA
product development, SOA implementation,
corporate SOA strategy, and leveraging the
next generation Web (Web 2.0).

Dave is the former CEO of BRIDGEWERX, former CTO of Mercator
Software, and has held key technology management roles with a
number of organizations including CTO of SAGA Software, Mobil
Oil, EDS, AT&T, and Ernst and Young. Dave is on the board of direc-
tors serving Bondmart.com, and provides advisory services for sev-
eral venture capital organizations and key technology companies.
In addition, Dave was an associate professor of computer science
for eight years, and continues to lecture at major technical colleges
and universities including the University of Virginia, Arizona State
University, and the University of Wisconsin. Dave keynotes at many
leading technology conferences on application integration, SOA,
Web 2.0, and enterprise architecture, and has appeared on a num-
ber of TV and radio shows as a computing expert.

Dave has authored over 800 articles and columns for major com-
puting publications, and has monthly columns in several popular
industry magazines including Web Services/SOA Journal and Busi-
ness Integration Journal. Dave writes the Real World SOA blog on
InfoWorld.com, and hosts the InfoWorld SOA Report Podcast. He is
also a columnist and blogger for Intelligent Enterprise. Dave has
authored or co-authored ten books including David Linthicum's
Guide to Client/Server and Intranet Development, and the ground-
breaking and best selling Enterprise Application Integration, re-
leased in 1998. His latest book, Next Generation Application Inte-
gration, is also a best seller.

Jim Murphy is Vice President of Product
Management at Mindreef, with more than
10 years experience designing, implement-
ing, testing and debugging distributed soft-
ware architectures using Java, .NET, C++
and XML. Prior to Mindreef, he was an
independent consultant, working with
companies building distributed systems focused on DCOM and
high-performance XML based messaging. He also served as a
director, software architect and senior software engineer at sev-
eral product and consulting organizations including Aspen Tech-
nology, Foliage Software Systems, TransactionWorks, and
WWWhoosh, the Excelergy Corporation. Jim holds a BASc in
Engineering from the University of Waterloo.

Jim has authored articles for trade publications, including
Software Test & Performance Magazine, and has spoken about
Web services and SOA testing and quality at key industry events
including Software Development Best Practices.

Mindreef, Inc., The SOA Quality Company™, is a leading provider
of integrated software solutions for the successful development
of Web services, enabling organizations to meet their goals for
high-quality SOA adoption. The Mindreef award-winning family
of SOAPscope® products enable project teams, architects, appli-
cation developers, testers, managers, operations, and support
staff to build, deploy, and maintain software for an SOA. More
than 3,000 customers at more than 1,200 organizations world-
wide, including 40 of the Fortune 100, use Mindreef products.

Mindreef SOAPscope products were developed through the
understanding that SOA quality goes well beyond the quality of
individual components such as Web services. Mindreef helps
organizations ensure quality as their SOA teams define, imple-
ment, integrate, test and deploy Web services and composite
applications.

Table of Contents

Introduction ……………………………………………………………………………. 1

Chapter 1: SOA Testing, The Basics………………………………………….. 2

Service Distribution ………………………………………………………. 2
Service Data ………………………………………………………………… 3
Service Behavior …………………………………………………………… 3
Service Integrity ……………………………………………………………. 3
Service Design ………………………………………………………………. 4
SLAs and Performance Testing ……………………………………… 4
Adherence to a Holistic Architecture ……………………………. 4

Chapter 2: Creating a SOA Test Plan ………………………………………… 5

Understanding Your Own Needs ..………………………………… 5
Transactional Heavy …………………………………………. 6
Data Heavy ………………………………………………………. 6
Process Heavy ………………………………………………….. 6

Defining the Approach …………………………………………………. 6
Bottom Up ……………………………………………………….. 6
Top Down ………………………………………………………… 7
System ……………………………………………………………… 7

Understanding the Domain ………………………………………….. 7

Considering Service Performance ………………………………… 8

Testing Levels ………………………………………………………………. 8

Information Level …………………………………………………………. 8

Service Level ………………………………………………………………… 9

Process Level ……………………………………………………………….. 10

Bringing the Plan Together …………………………………………… 11

Chapter 3: Step-by-Step Guide to SOA Testing ……………………….. 15

So How do you go About Testing a SOA? …………………….. 15

1. Define the Testing Domain ………………………………………… 16
System Description Analysis …………………………….. 16
SOA Testing Proof of Concept …………………………. 16

2. Define Architectural Objectives ……………………………….. 17
Define Logical Architecture ……………………………… 17
Define Physical Architecture ……………………………. 17

3. Design, Review and Test Planning ……………………………. 18
Review Core Design …………………………………………. 18
Create Test Plan ………………………………………………. 18
Create Test Plan and Implementation Schedule . 18

4. Create Functional Testing Approach ………………………… 19
Define Core Services ……………………………………….. 19
Define Core Data …………………………………………….. 19
Define Core Processes …………………………………….. 20

5. Define Performance Requirements …………………………. 20
Create Service Level Performance Requirements 20
Create Data Level Performance Requirements … 21
Create Process Level Performance Requirements 21

6. Define SLA Requirements ………………………………………… 21
Create a Service Level SLA ………………………………. 21
Create a Service Level SLA ………………………………. 22
Create a Service Level SLA ……………………………….. 22

7 .Define Data Layer Testing Approach ………………………... 22
Create Data Layer Definition ……………………………. 23
Create Data Abstraction Testing Approach ………. 23
Create Data Access Testing Approach ……………... 23

8. Define Services Layer Testing Approach …………………… 23
Create Services Layer Definition ……………………... 24
Create Services Testing Approach …………………... 24
Create Composite Services Testing Approach ….. 24

9. Define Policy Layer Testing Approach ………………………. 25
Create Policy Layer Definition ……………………….... 25
Create Policy Testing Approach ………………………. 26
Create Governance Testing Approach ……………... 26

10. Define Process Layer Testing Approach …………………. 26
Create Process Layer Definition ……………………….. 27
Create Process Testing Approach …………………….. 27

11. Define Service Simulation ……………………………………... 28
Create Service Simulation Approach ……………….. 28
Create Service Simulation Model …………………….. 28
Test Service Simulation …………………………………… 28

12. Create Core Scenarios ……………………………………………. 29
Create Approach to Scenarios …………………………. 29
Create Specific Scenarios ………………………………... 29

13. Create User-Defined Compliance Rules ………………….. 30
Create Approach to Compliance Rules ……………. 30
Create Compliance Rules ………………………………… 30

14. Select the SOA Testing Technology Suite ………………… 31
Define Requirements ……………………………………... 31
Define Candidate Technology …………………………. 31
Technology Analysis ……………………………………….. 31
Technology Selection ……………………………………... 31
Technology Validation ……………………………………. 31

15. Testing Execution …………………………………………………… 32
Unit Testing ……………………………………………………. 32
Functional Testing …………………………………………… 33
Regression Testing ………………………………………….. 33
Compliance and Validation …………………………….. 33

16. Looping Back to Design and Development …………….. 34
Analysis of Test Results …………………………………… 34
Define Impact on Design and Development ……. 34

17. Define Diagnostics for Design Time and Run Time ….. 35

18. SOA Testing Debrief and Lessons Learned …………….. 36

19. Operational Test Planning ……………………………………… 37
Create Approach to Operational Test Planning … 37
Development of Operational Test Plan ……………. 37
Select Operational Testing Tools …………………….. 37

Chapter 4: Using Mindreef SOAPscope Server ………………………… 38

Conclusion …………………………………………………………………………….. 40

 Key Strategies for SOA Testing

Introduction

Service Oriented Architecture (SOA) requires a unique approach
to testing. Unless you’re willing to reorient your testing proce-
dures and technology now, you may find yourself behind the
curve as SOA becomes systemic to all that is enterprise architec-
ture.

Moreover, as we add more complexity to get to an agile and
reusable state, the core notion of SOA becomes that much
more strategic to the business. If you’re willing to take the risk,
the return on your SOA investment will come back three fold…
that is, if it is a well-tested SOA. Untested SOA could cost you
millions.

In this handbook, we will provide you with the key notions
around SOA testing as well as the processes needed to effec-
tively test a SOA, including a step-by-step guide for defining
your own testing domain, understanding your unique needs,
and then testing all components in such a way as to ensure that
your SOA will be productive and useful from the first day of op-
eration.

We’ll also introduce technology such as Mindreef SOAPscope
Server, that when used with the SOA testing approaches de-
fined in this paper, will provide a strategic advantage through
automation and repeatability.

 Chapter 1: SOA Testing, the Basics

SOA Testing, The Basics

While there are no hard and fast guidelines as to what makes
up a well-defined and developed service, we do know a few
things:

 Services are not complete applications or systems. They are
small parts of an application, and should be tested as such.
Services are not subsystems; they are small parts of subsys-
tems as well. Indeed, services are more analogous to tradi-
tional application functions in terms of design, and how
they are leveraged to form solutions, fine- or coarse-
grained. Knowing that, we have a better basis of under-
standing when approaching the services testing problem.

 Each service has a specific purpose, and they are not com-
plex or naturally dependent upon other services. Thus,
they are easily abstracted into composite applications, in
essence, leveraging these services as if they are functions
local to the composite.

 Services should exist with a high degree of autonomy. They
should execute without dependencies, if at all possible.
This allows you to leverage the service by itself, and design
the service with this in mind, no matter how fine- or coarse-
grained the service is.

When considering SOA testing, you need to consider that the
services are distributed within the enterprise. This service dis-
tribution comes with its own set of challenges, including the
ability discover the services under test in heterogeneous envi-
ronments. Moreover, the actual runtime testing of each service
is complex unto itself.

 Key Strategies for SOA Testing

Testing of the data as it flows through a service is critical to the
health of the service. While many attempt to leverage tradi-
tional data testing methods, testing data in the context of ser-
vices is a bit different, such as testing database validity as a ser-
vice. Approaches to service data testing includes monitoring
points of information externalization which are leveraged to
watch the data as it flows through the service. Also, consider
the information the service consumes, with the information the
service produces.

When considering testing, we also need to focus on the behav-
ior, or the functionality of the service. This means that the logic
of the service is monitored and determined to be sound, and
that the information flowing into the service is processed cor-
rectly according to the design of the service. We can accomplish
this by building up permutations of request input data AND XML
structure, mixing with different security context. Establishing
coverage metrics is key here. Moreover, if the service is de-
signed to provide different behavior via context, that needs to
be monitored throughout the processing of the service as well.
Same approach; set up monitoring points, and watch the behav-
ior through execution.

Service integrity is the degree to which the service is able to
deliver consistent value over a long period of time. Typically
this is tested through a sustainable testing cycle, reflecting real
world use cases. In other words, the ability for the service to
deliver functionality to a consumer. Thus, testing for service
integrity is critical to the overall testing of the SOA.

 Chapter 2: Creating a SOA Test Plan

Testing for service design means understanding the functional-
ity of the service, and the design patterns used, and the ability
for that service to live up to that particular design. This process
involves interaction between multiple roles, such as architects,
designers, and developers.

Moreover, this incorporates aspects of governance relating to
how service interfaces conform to local and industry design
standards. The idea of service design testing is to understand
the overall design of the service, and thus how the services exist
in support of those patterns.

Service level agreements (SLAs) are contracts that exist inter-
nally or externally and consider the consistent performance of a
service. The idea is to create an agreement that insures that a
service will provide a specific level of performance, and then
measure the performance of the service to the agreement.

This is an important component of testing since services that
don’t live up to SLAs will hinder the overall performance and
functionality of the SOA. Keep in mind that SLAs often control
your level of quality.

Finally, it’s important to note that a SOA is an architecture, thus
you need to test the architecture holistically, including how the
overall architecture is living up to core objectives such as reuse
and agility. This means working up from the most primitive
components of the architecture, such as information persis-
tence, up through data and transactional services, up to orches-
tration and composite application development.

 Key Strategies for SOA Testing

Creating a SOA test plan

Creating a test plan around SOA is more involved that one might
think. Needed is a way to understand the architecture at a
meta level, and then figure out how to break the architecture
into component parts that can be tested as a unit, tested as a
linked-group, as well as tested as the architecture holistically.

One of the things to consider is the notion of enterprise and pro-
ject-wide test planning. Typically this means creating an enter-
prise-wide set of testing standards and procedures that drive
value down to testing at the project levels. You must consider
the core value of each, and the ability for the projects to drive
their issues up to the enterprise-wide testing strategy, and the
ability for the enterprise-wide testing strategy to drive value
down to the projects.

While many in the press and vendor community would lead you
to believe that SOAs are all the same, the reality is that the ar-
chitecture and solution sets are very different from problem
domain to problem domain.

So part of the process of creating your own SOA test plan is to
understand that, and understand the requirements that are
unique to you, and thus must be part of the test planning.

Typically, SOAs have design patterns that fall into a few major
categories:

 Transactional Heavy
 Data Heavy
 Process Heavy

 Chapter 2: Creating a SOA Test Plan

Transactional Heavy SOAs are architectures where the use of
transactional services is more apparent. Typically, these are on-
line transaction processing types of application clusters that use
an architecture where transactional services are leveraged and
invoked more than others.

Data Heavy SOAs are architectures where most of the services
employed are data services, or services that broker in informa-
tion more so than behavior.

Process Heavy SOAs are architectures where the core dynamics
of the architecture are driven at the process level. Typically,
these are architectures where volatility is the norm, and thus
the core services are abstracted into a process layer where they
can be changed more easily.

Throughout the methodology we call out steps to define each
component’s approach to testing. Prior to that, and within the
plan, we need to focus on how we’re going to approach testing
holistically.

Considering the approach to testing SOA, we have a few op-
tions, including:

 Bottom Up
 Top Down
 System

The Bottom Up approach to testing means we’re looking to test
our SOA from the most primitive features to the most sophisti-
cated. Typically this refers to working up from the data to the
process (see Figure 1), working up through the data services,
data abstraction, and transactional services layers to the process
layers, and finally the monitoring and event management layers.
This is done by testing each component at the lower layers, and
moving up to the high layers.

 Key Strategies for SOA Testing

The Top Down approach reverses the order, working from the
monitoring and event management layers down through the
architecture to the data. This is done by testing each compo-
nent at the higher layers, moving down to the lower layers.

The System approach means we’re testing the architecture ho-
listically, looking at the entire solution set as one functional
[what], and testing all interfaces to the architecture at all levels
noting the inputs, outputs, and behaviors during testing.

It should be noted that you can use any or all approaches; they
are not mutually exclusive. Indeed, most successful SOA testing
projects leverage all approaches, putting emphasis on one ap-
proach based on the requirements of the architecture.

Figure 1: To approach SOA testing you can work up from the bottom,

down from the top, test components, or the entire architecture.

When creating a test plan, the primary point of reference should
be a complete understanding of the problem domain. While it
would be nice to use the same approaches for all SOAs, the real-
ity is that you must first analyze the problem domain in detail
before you can figure out how to test it.

 Chapter 2: Creating a SOA Test Plan

Typically, you need to have semantic level, services level, and
process level understanding of the problem domain before
you’re able to effectively select the proper testing approach and
test planning. This comes from the analysis done when the
architecture was created, but if not completed prior to the test-
ing phase, it should be understood nonetheless.

Since services are the central component of a SOA, the ability
for the services to provide the necessary performance is key to
the success of a SOA. Thus, during the test planning, perform-
ance testing should be:

 Defined at a high level, or the approach
 Defined at a low level, [or?] the method

By doing this we can insure that we’re validating that the ser-
vices will live up to the SLAs defined, and also provide holistic
performance of the SOA that meets performance expectations
at all levels of the architecture. Keep in mind the overall per-
formance of the SOA is defined by the slowest service in the ar-
chitecture.

As we discussed above, you need to consider the levels of a SOA
to better define testing approaches. For our purposes we can
call these levels:

1. Information Level
2. Service Level
3. Process Level

The information level of a SOA refers to the underlying data that
links to the services. While in many cases these are standards
databases, there are legacy systems, CRM systems, ERP systems,
and other “stovepipe” applications which may produce and con-
sume business information as well.

 Key Strategies for SOA Testing

The information level is core to SOA since most services that
exist within a SOA are data services, and most business systems
are all about the processing of information. Thus, to success-
fully test a SOA at the information level, you need to understand
that it’s not only the value of the information, as persisted, but
it’s the use of the data within the services.

You test data within the services considering the patterns of in-
formation processing through the services. Some key questions
you need to ask include:

 What metadata is bound to the service?
 What integrity constraints are enforced by the service?
 How is the data abstracted from the source database?

Within the world of SOA, services are the building blocks, and
are found at the lowest level of the stack. Services become the
base of a SOA, and while some are abstract existing “legacy ser-
vices,” others are new and built for specific purposes. Moving
up the stack, we then find composite services, or services made
up of other services, and all services abstract up into the busi-
ness process or orchestration layer, which provides the agile
nature of a SOA since you can create and change solutions using
a configuration metaphor.

When testing services, you need to keep the following in mind:

Services are not complete applications or systems, and must be
tested as such. They are a small part of an application. Nor are
they subsystems; they are small parts of subsystems as well.
Thus, you need to test them with a high degree of independ-
ence, meaning that the services are both able to properly func-
tion by themselves, and also as part of a cohesive system. In-
deed, services are more analogous to traditional application
functions in terms of design and how they are leveraged to form
solutions, fine- or coarse-grained.

 Chapter 2: Creating a SOA Test Plan

The best approach to testing services is to list the use cases for
those services. At that point you can design testing approaches
for that service including testing harnesses, or the use of SOA
testing tools (discussed later). You also need to consider any
services that the service may employ, and thus be tested holisti-
cally as a single logical service. In some cases you may be test-
ing a service that calls a service, that calls a service, where some
of the services are developed and managed in house, and some
of them exist on remote systems that you don’t control. All use
cases and configurations must be considered.

Services should be tested with a high degree of autonomy.
They should execute without dependencies, if at all possible,
and be tested as independent units of code using a single design
pattern that fits within other systems which use many design
patterns. While all services can’t be all things to all containers,
it’s important to spend time understanding their foreseeable
use, and make sure those are built into the test cases. You
should have the ability to simulate services. Testers can build
simulations of dependent services to isolate a service under
test. The tester uses SOAP messages and the WSDL to “mock”
the services at a live HTTP endpoint.

Services should have the appropriate granularity. Don’t focus
on too-fine-grained or too-course-grained. Focus on that cor-
rect granularity for the purpose and use within the SOA. Here
the issues related to testing are more along the lines of perform-
ance than anything else. Too-fine-grained services have a ten-
dency to bog down performance due to the communications
overhead required when dealing with so many services. Too-
loose-grained, they don’t provide the proper autonomic values
to support their reuse. You need to work with the service de-
signer on this issue.

One can consider the process level of a SOA as the place where
services are abstracted, orchestrated, or bound together, to
form a business solution.

 Key Strategies for SOA Testing

In essence, it’s the process layer where solutions are formed,
changed, changed again, removed, and added.

We leverage a process level within SOA because it places volatil-
ity into a single domain, and thus allows the architect to adjust
core business processes to meet the changing needs of the busi-
ness. This also becomes a single point of failure, and the proc-
ess level must be tested with the same degree of importance as
the service and information levels.

For the purposes of testing, we can consider the process level as
another collection of services that have to consume informa-
tion, process information, provide functional behavior, and pro-
duce information. Moreover, the process level typically binds
services together into composite services, for the purpose of
processes, and also drives sequencing, nesting, and manage-
ment of service interdependence.

While it would be nice if there were a single approach to creat-
ing and maintaining a process level, the truth is that process lev-
els are created using all sorts of approaches, standards, and ena-
bling technologies for SOA. BPEL for use with services orches-
tration is an example of an approach, chorography is another, as
well as proprietary process engines. By respecting the service
interface boundary, the service implementation is largely irrele-
vant. The SOA tenets create constrained and verifiable layers in
the architecture.

Creating the core plan for SOA testing means considering all of
the issues we just defined above. However, the exact way in
which you test your SOA, and the plan supporting it, will vary
from problem domain to problem domain. Thus, the most im-
portant step in creating a test plan for your SOA is to understand
what’s unique about your situation, how your architecture exists
at the information, service, and process levels, and how to test
each and all levels effectively.

 Chapter 2: Creating a SOA Test Plan

A common pattern for all SOA is the fact that SOA testing boils
down to services. Thus, testing services as collections, stand-
alone, or holistically as a complete architecture is core to all of
this. Equally important is how you create a plan, and the test-
ing technology you employ to test services in terms of reliability,
data validation, and ability to live up to SLAs.

Looking at this problem holistically, you have a set of predefined
steps that can be taken in sequence or can be interactive.

At a high level, the steps look like this:

1. Define the Testing

Domain

Define Testing Domain

System

Descriptions

System Description Analysis

SOA Testing POC

POC

Results

Domain

Description

SOAPscope ServerTM

2. Define Architectural

Objectives

Define Architectural

Objectives

Logical

Architecture

Define Logical Architecture

Define Physical Architecture

Physical

Architecture

Domain

Descriptions

3. Design Review and Test

Planning
Design Review and Test

Planning

Final

Design
Review Core Design

Create Test Plan

Test

Plan

Create Test Plan Implementation

Schedule

Implementation

Schedule

Physical

Architecture

Logical

Architecture

5. Define Performance

Requirements
Define Performance

Requirements

Service

Level

Performance

Requirements

Create

Service Level Performance

Requirements

Create

Data Level Performance

Requirements

Data

Level

Performance

Requirements

Create

Process Level Performance

Requirements

Process

Level

Performance

Requirements

Test

Plan

6. Define SLA Requirements

Define SLA

Requirements

Service

Level

SLACreate

Service Level SLA

Create

Data Level SLA

Data

Level

SLA

Create

Process Level SLA

Process

Level

SLA

Test

Plan

4. Create Functional

Testing Approach
Create Functional

Testing Approach

Functional

Services

Testing

Approach

Define Core Services

Define Core Data

Functional

Core Data

Testing

Approach

Define Core Processes

Functional

Core

Processes

Testing

Approach

Test

Plan

 Key Strategies for SOA Testing

7. Define Data Layer Testing

Approach
Define Data Layer Testing

Approach

Data Layer

Definition

Create Data Layer Definition

Create Data Abstraction

Testing Approach

Data

Abstraction

Testing

Approach

Create Data Access

Testing Approach

Data

Access

Testing

Approach

Test

Plan

Physical

Architecture

Logical

Architecture

8. Define Services Layer

Testing Approach
Define Services Layer Testing

Approach

Services

Layer

DefinitionCreate Services Layer Definition

Create Services

Testing Approach

Services

Testing

Approach

Create Composite Services

Testing Approach

Composite

Services

Testing

Approach

Test

Plan

Physical

Architecture

Logical

Architecture

9. Define Policy Layer Testing

Approach
Define Policy Layer Testing

Approach

Policy

Layer

DefinitionCreate Policy Layer Definition

Create Policy

Testing Approach

Policy

Testing

Approach

Create Governance

Testing Approach

Governance

Testing

Approach

Test

Plan

Physical

Architecture

Logical

Architecture

10. Define Process Layer

Testing Approach
Define Process Layer Testing

Approach

Process

Layer

DefinitionCreate Process

Layer Definition

Create Process

Testing Approach

Process

Testing

Approach

Test

Plan

Physical

Architecture

Logical

Architecture

11. Define Service Simulation

Define Service Simulation

Service

Simulation

ApproachCreate Service

Simulation Approach

Create Service

Simulation Model

Service

Simulation

Model

Test Service Simulation

Service

Simulation

Test

Results

Test

Plan

Services

Layer

Definition

Services

Testing

Approach

SOAPscope ServerTM

12. Create Core Scenarios

Create Core Scenarios

Scenario

Approaches

Create Approach to Scenarios

Create Specific Scenarios

Scenarios

Test

Plan

Physical

Architecture

Logical

Architecture

SOAPscope ServerTM

13. Creating User Defined

Compliance Rules
Create User Defined Compliance

Rules

Compliance

Rule

ApproachesCreate Approach to Compliance

Rules

Create Compliance Rules

Compliance

Rules

Test

Plan

Physical

Architecture

Logical

Architecture

SOAPscope ServerTM

14. Select SOA Testing

Technology Suite
Select your SOA Testing

Technology Suite

Technology

Requirements

Define requirements.

Technology analysis.

Technology

solution

Define candidate technology.

Technology selection.

Technology validation.

SOAPscope ServerTM

 Chapter 2: Creating a SOA Test Plan

Regression Testing

Regression

Testing

Regression

Testing

Results

Test

Plan

Physical

Architecture

Logical

Architecture

SOAPscope ServerTM

Functional Testing

Functional

Testing

Functional

Testing

Results

Test

Plan

Physical

Architecture

Logical

Architecture

SOAPscope ServerTM

Next, let’s see how you do this step-by-step.

Unit Testing

Unit Testing

Unit

Testing

Results

Test

Plan

Physical

Architecture

Logical

Architecture

SOAPscope ServerTM

Compliance and validation (WSDL,

schema, messages)

Compliance

And

Validation

Testing

Compliance

And

Validation

Results

Test

Plan

Physical

Architecture

Logical

Architecture

SOAPscope ServerTM

16. Looping back to Design and

Development
Looping Back to Design

And Development

Test Results

Analysis

Analysis of Test Results

Define Impact on Design and

Development

Design

And

Development

Impact

Test

Results

Physical

Architecture

Logical

Architecture

Development

17. Define Diagnostics for

design-time and run-time

Define Diagnostics for

Design-Time and Run-Time

Diagnostics

For

Design-Time

Diagnostics

For

Run-Time

Test

Results

Physical

Architecture

Logical

Architecture

SOAPscope ServerTM

18. SOA Testing Debrief and

Lessons Learned

SOA Testing

Debrief

And

Lessons

Learned

SOA

Testing

Debrief

Notes on

Testing

Procedures

And

Results

Test

Results

Physical

Architecture

Logical

Architecture

19. Operational Test Planning

Operational Test Planning

Approach

To

Operational

Test Planning
Create Approach to Operational

Test Planning

Development of Operational

Test Plan

Operational

Test

Plan

Test

Plan

Physical

Architecture

Logical

Architecture
Select Operational

Testing Tools

Operational

Testing

Solution

15. Testing Execution

• Unit Testing

• Functional Testing

• Regression Testing

• Compliance and validation

(WSDL, schema, messages)

 Key Strategies for SOA Testing

Step-by-step guide to SOA testing

Beyond the approaches, concepts, and guidelines provided
above, it’s productive to provide you with a step-by-step meth-
odology. In essence, if you follow these steps you can insure
that your SOA will be properly tested, you will create all of the
artifacts you need, understand your own problem domains, and
leverage key testing technology.

As you leverage these steps, keep a few things in mind:

 This methodology is iterative, meaning, you don’t have to

move through the steps sequentially; however, a few steps
are dependent upon artifacts created in the prior steps,
but most are independent and loosely coupled.

 While you can skip a few steps (as needed for your own
requirements), most of the steps address a critical compo-
nent of SOA testing, so make sure you understand at least
what the step is suggesting before moving on.

 Pay close attention to why things are done, more so than
how they are being done.

 There is a suggested “loop” in this method. This means
we assume that once we complete the steps, we loop back
to complete the steps again for each instance of a SOA.
As such, we will incorporate lessons learned as we drive
again through the method.

 Take the time to make this method your own. Meaning,
customize it for your purposes, as needed, even add or
change steps.

 Chapter 3: Step-by-step guide to SOA Testing

The first step is to define the testing domain, or the area of the
SOA that will be under test. There are a few sub-steps, including:

 System Description Analysis
 SOA Testing Proof of Concept (POC)

Key artifacts created are:

 Domain Description
 System Description
 Proof-of-Concept Results

System description analysis means the complete analysis of all
systems under test and the creation of the system description
document that defines the overall description of the system,
including components, data, services, and processes. This is a
not a detailed description, but an overall view of the system
which will allow enough understanding to approaching testing.

SOA testing proof of concept is the process of leveraging a test-
ing tool within the POC. This is where the Mindreef SOAPscope®
family of products first come into play as you determine how
the tools are leveraged within the context of the SOA. The data
points leveraged out of this POC will provide critical information
in terms of how the SOA testing is defined during this process.

Figure 2: Define the Testing Domain

 Key Strategies for SOA Testing

The second step is to define the architectural objectives, or the
logical view of the architecture and the physical view of the ar-
chitecture. The major sub-steps include:

 Define Logical Architecture
 Define Physical Architecture

Key artifacts created are:

 Logical Architecture
 Physical Architecture

Define logical architecture refers to the process of defining how
the architecture exists conceptually, independent of physical
instances of technology. We use this document as a way to un-
derstand the logical components of the SOA, and how each
component interacts with others.

Define physical architecture refers to the process of defining
how the physical instances of technology (ESBs, orchestration,
service platform) interact, one to another. Like the logical archi-
tecture, this document demonstrates how all of the components
interact, but now defines all components, interfaces, standards,
and all enabling technology. Both the logical and physical archi-
tectures will be key to the remainder of the process.

Figure 3: Define Architectural Objectives

 Chapter 3: Step-by-step guide to SOA Testing

In this step we set up the testing project, including reviewing the
core design of the SOA, both logical and physical architectures,
and determine how we are going to approach testing, the test
plan to leverage, and the project work schedule. The major sub-
steps include:

 Review Core Design
 Create Test Plan
 Create Test Plan Implementation Schedule

Key artifacts created are:

 Final Design
 Test Plan
 Implementation Schedule

Review core design, as we discussed above, means taking time
to review both the logical and physical architectures and con-
sider the design in how we define our testing procedures. The
criteria should be created during the plan before reviewing the
core design.

Create test plan is the process of leveraging the design and ar-
chitecture information to put together an approach and plan for
testing the SOA, including all processes, procedures, and ena-
bling technology. This is a foundation document for the rest of
the methodology.

Create test plan and implementation schedule is the process of
creating a project and work plan for how the resources are to be
leveraged to complete testing of the SOA.

 Key Strategies for SOA Testing

Figure 4: Design Review and Test Planning

In this step we set up the approach to functional testing of the
SOA. The major sub-steps include:

 Define Core Services
 Define Core Data
 Define Core Processes

Key artifacts created are:

 Functional Core Services Testing Approach
 Functional Core Data Testing Approach
 Functional Core Processes Testing Approach

Define core services is the process of listing and defining all of
the services within the problem domain that will be under test,
and the approach for functional testing those services. This
means understanding what they do, who they are for, what’s
the native metadata, etc.

Define core data is the process of listing and defining all of the
data within the problem domain that will be under test, and the
approach for functional testing that data.

 Chapter 3: Step-by-step guide to SOA Testing

Define core processes is the process of listing and defining all of
the processes within the problem domain that will be under
test, and the approach for functional testing those processes.
When considering this process, we mean how the service is
composed with other services to form a higher level process.

Figure 5: Create Functional Approach

In this step we approach performance requirements. The major
sub-steps include:

 Create Service Level Performance Requirements
 Create Data Level Performance Requirements
 Create Process Level Performance Requirements

Key artifacts created are:

 Service Level Performance Requirements
 Data Level Performance Requirements
 Process Level Performance Requirements

Create service level performance requirements refers to the
process of determining performance expectations for all ser-
vices within the testing domain, including response time under
an increasing load.

 Key Strategies for SOA Testing

Create data level performance requirements refers to the proc-
ess of determining performance expectations for all data access
services, including response time under an increasing load.

Create process level performance requirements refers to the
process of determining performance expectations for all proc-
esses, including response time under an increasing load.

Figure 6: Define Performance Requirements

In this step we approach SLA (service level agreement) require-
ments. The major sub-steps include:

 Create Service Level SLA
 Create Data Level SLA
 Create Process Level SLA

Key artifacts created are:

 Service Level SLA
 Data Level SLA
 Process Level SLA

Create service level SLA refers to the process of defining the
performance expectations and agreement for particular ser-
vices, including response times and uptime requirements.

 Chapter 3: Step-by-step guide to SOA Testing

Create data level SLA refers to the process of defining the per-
formance expectations and agreement for particular data
(persistence), including response times, and uptime require-
ments. This means that certain data is more important than
other data and should be tested differently.

Create process level SLA refers to the process of defining the
performance expectations and agreement for particular proc-
esses, including response times and uptime requirements.

Figure 7: Define SLA Requirements

In this step we define data layer testing requirements and the
testing approach. The major sub-steps include:

 Create Data Layer Definition
 Create Data Abstraction Testing Approach
 Create Data Access Testing Approach

Key artifacts created are:

 Data Layer Definition
 Data Abstraction Testing Approach
 Data Access Testing Approach

 Key Strategies for SOA Testing

Create data layer definition refers to the process of defining, in
detail, the data layer that will be under test. This includes struc-
ture, attributes, validation logic, security, and other information
that will assist in defining information to be tested.

Create data abstraction testing approach refers to the process
of defining any data abstractions in place, and the approach for
testing the data abstraction, that have remapped the physical
database to different virtual structures.

Create data access testing approach refers to the process of
creating the approach to data level testing, including tools, stan-
dards, technology, and other information that will assist in de-
fining the approach to data access testing.

Figure 8: Define Data Layer Testing Approach

In this step we define the services layer testing requirements
and approach. The major sub-steps include:

 Create Services Layer Definition
 Create Services Testing Approach
 Create Composite Services Testing Approach

 Chapter 3: Step-by-step guide to SOA Testing

Key artifacts created are:

 Services Layer Definition
 Services Testing Approach
 Composite Services Testing Approach

Create services layer definition refers to the process of defining
all services that are under test, including access approaches,
enabling technology, and use of standards.

Create services testing approach refers to the process of deter-
mining the best way to approach testing the services defined in
the previous step. This means understanding access mecha-
nisms, service grouping, and other information that will be use-
ful in creating the approach.

Create composite services testing approach, like the previous
step, refers to the process of determining the best way to ap-
proach testing of the composite services. This means under-
standing access mechanisms, service grouping, and other infor-
mation that will be useful in creating the approach.

Figure 9: Define Services Layer Testing Approach

 Key Strategies for SOA Testing

In this step we define the policy layer testing approach. Most
companies that are building Web services encounter inoperability
issues when services are implemented and consumed using tools
from different vendors. To mitigate that, organizations mandate
that WSDL contracts conform to the WS-I Basic Profile.

It is common practice to augment industry standard policies with
additional requirements or best practices created by corporate
and lead architects who focus on infrastructure. Their goal is to
ensure that contracts interoperate with the specific toolkits and
frameworks that a company has adopted.

Rigorous testing alone cannot impose quality where it doesn't ex-
ist. Even well-written services cannot guarantee broad interopera-
bility unless standards and best practices are well designed and
adhered to throughout an organization and throughout the devel-
opment lifecycle. The major sub-steps include:

 Create Policy Layer Definition
 Create Policy Testing Approach
 Create Governance Testing Approach

Key artifacts created are:

 Policy Layer Definition
 Policy Testing Approach
 Governance Testing Approach

Create policy layer definition refers to the process of defining all
policies that are under test, including access approaches, enabling
technology, and use of standards. Policies need to be tested since
they are enforced against the use of services. Thus, once policies
are created for a service; those policies need to be tested to deter-
mine that they are functioning per the design.

 Chapter 3: Step-by-step guide to SOA Testing

Create policy testing approach refers to the process of deter-
mining the best way to approach testing the policies defined in
the previous step. This means understanding access mecha-
nisms, policy grouping, and other information that will be useful
in creating the approach. You test policies by running specific
testing scenarios against the service to determine if the policy is
behaving correctly.

Create governance testing approach refers to the process of
determining the best way to approach testing of the holistic
governance layer.

Figure 10: Define Policy Layer Testing Approach

In this step we define the process layer testing requirements
and approach. The major sub-steps include:

 Create Process Layer Definition
 Create Process Testing Approach

 Key Strategies for SOA Testing

Key artifacts created are:

 Process Layer Definition
 Process Testing Approach

Create process layer definition refers to the process of defining
(what they are, who owns them, and how they are designed) all
processes that are under test, including access approaches, ena-
bling technology, and use of standards.

Create process testing approach refers to the process of deter-
mining the best way to approach testing the process defined in a
previous step. This means understanding access mechanisms,
process grouping, and other information that will be useful in
creating the approach.

Figure 11: Define Process Layer Testing

 Chapter 3: Step-by-step guide to SOA Testing

In this step we define the service simulation approach for test-
ing. We do this to isolate service dependencies so you can test
some services, without testing many services. The major sub-
steps include:

 Create Service Simulation Approach
 Create Service Simulation Model
 Test Service Simulation

Create service simulation approach is the process of defining
the core approaches to simulating services for use when testing
the SOA. These simulation services provide a mechanism to
test the services, and SOA, prior to deployment and ongoing.

Create service simulation model is the process of taking the ap-
proach created in the previous step, and defining the model for
use while testing, and ongoing.

Test service simulation means using the service simulation ap-
proach and service simulation model to test the simulation ser-
vices. Any issues are noted here, and addressed in this step.

Figure 12: Define Service Simulation

 Key Strategies for SOA Testing

In this step we define the core scenarios for SOA testing.
The major sub-steps include:

 Create Approach to Scenarios
 Create Specific Scenarios

Key artifacts created are:

 Scenario Approaches
 Scenarios

Create approach to scenarios refers to the process of creating a
general approach to the scenarios or use cases employed to test
the SOA. These scenarios approaches are designed to reflect
real life uses of the services, and the SOA.

Create specific scenarios is just a process of leveraging the ap-
proach, defined in the previous steps, to create specific scenar-
ios for testing the services and SOA.

Figure 13: Create Core Scenarios

 Chapter 3: Step-by-step guide to SOA Testing

In this step we define the user-defined compliance rules for SOA
testing. This is part of the testing policy, and leveraged when
design guidelines are part of a policy. The major sub-steps
include:

 Create Approach to Compliance Rules
 Create Compliance Rules

Key artifacts created are:

 Compliance Rules Approaches
 Compliance Rules

Create approach to compliance rules means creating a general
way in which compliance rules will be approached in the context
of SOA testing. These approaches should set the stage for creat-
ing the actual compliance rules that are created in the next step.

Create compliance rules means creating the actual compliance
rules for the SOA, leveraging the approach created in the previous
step.

Figure 14: Create User-Defined Compliance Rules

 Key Strategies for SOA Testing

In this step we define the SOA Testing Technology Suite.
The major sub-steps include:

 Define Requirements
 Define Candidate Technology
 Technology Analysis
 Technology Selection
 Technology Validation

Key artifacts created are:

 Technology Requirements
 Technology Solution

Define requirements, meaning to define the requirements for the
technology needed to be employed, including service testing suite,
other technology required for SOA testing.

Define candidate technology, meaning to list the technology
required for SOA testing, including integrated software solutions
such as Mindreef SOAPscope Server™, Mindreef Load Check™,
and Mindreef Policy Rules Manager™.

Technology analysis, meaning to analyze the technology for fit
and function, for the application to the SOA testing procedures
defined in the previous step.

Technology selection, meaning to select the Mindreef testing
technology to test the SOA, with the artifact previously defined.

Technology validation, meaning to validate the technology to
determine if it works properly in context to the requirements
defined in the previous step. Typically, this is done through
validation testing.

 Chapter 3: Step-by-step guide to SOA Testing

Figure 15: Select your SOA Testing Technology Suite

In this step we carry out the testing of the SOA, including:

a. Unit Testing
b. Functional Testing
c. Regression Testing
d. Compliance and Validation (WSDL, schema, messages)

Figure 16: Unit Testing

 Key Strategies for SOA Testing

Figure 17: Functional Testing

Figure 18: Regression Testing

Figure 19: Compliance and Validation Testing

 Chapter 3: Step-by-step guide to SOA Testing

In this step we define how to feed the test results back to
development to improve the SOA/services development process.
The major sub-steps include:

 Analysis of Test Results
 Define Impact on Design and Development

Key artifacts created are:

 Test Results Analysis
 Impact on Design and Development

Analysis of test results, meaning to look at the test results of the
services/SOA testing process defined in this methodology, and
prepare the results for feedback to design and development.

Define impact on design and development, meaning to send
the results back from the services/SOA testing process to
development.

Figure 20: Looping Back to Design and Development.

 Key Strategies for SOA Testing

In this step we define core diagnostics for the SOA, and detailed
approaches for implementation. The major sub-step is:

 Define Diagnostics for Design-Time and Run-Time

Key artifacts created are:

 Diagnostics for Run-Time
 Impact on Design and Development

Define diagnostics for design-time and run-time means to cre-
ate the diagnostic approaches for the design-time and run-time
instances of the SOA.

Figure 21: Define Diagnostics for Design-Time and Run Time

 Chapter 3: Step-by-step guide to SOA Testing

In this step we define SOA testing information for consumption
by third party entities, such as the executive team. The major
sub-step is:

 SOA Testing Debrief and Lessons Learned

Key artifacts created are:

 SOA Testing Debrief
 Notes on Testing Procedures and Results

SOA testing debrief and lessons learned means to summarize
the SOA testing effort for third parties in terminology
appropriate to the audience.

Figure 22: SOA Testing Debrief and Lessons Learned

 Key Strategies for SOA Testing

In this step we define operational test planning for the SOA, or
the ongoing testing of the SOA during production. The major
sub-steps include:

 Create Approach to Operational Test Planning
 Development of Operational Test Plan
 Select Operational Testing Tools

Key artifacts created are:

 Approach to Operational Test Planning
 Operational Test Plan
 Operational Testing Solution

Create approach to operational test planning is to create a gen-
eral approach to operational testing that defines the scope, the
purpose, and the guidelines for execution.

Development of operational test plan is to create a plan to
bring operational testing to the SOA.

Select operational testing tools is to select the proper tools for
operational test planning.

Figure 23: Operational Test Planning

 Chapter 4: Using Mindreef SOAPscope Server

Using Mindreef SOAPscope Server

The methodology in this book was developed around the use of
Mindreef SOAPscope Server™, the industry's leading solution for
testing and verifying the quality of service-oriented architec-
tures. It is server-based with hosted tools to provide always-on
access so that SOA team members can perform quality-related
tasks or access quality-related artifacts at any time. Every mem-
ber of your project team can deliver quality SOAs and services in
an agile development lifecycle, by delivering better software at
each phase with:

 Enforceable SOA governance and compliance that starts
with the architectural team and continues through devel-
opment and testing

 Testing capabilities that let you start building quality and
performance with unit tests as early as during the develop-
ment phase and continue to drive it with functional, accep-
tance, regression, and performance tests by the testing
team

 Support capabilities that allow your tech support and test
teams to speed diagnosis and resolution by bundling and
sharing completely reproducible test scenarios and prob-
lems with development

 Industry-leading collaboration across the entire SOA pro-
ject team, that's always on and accessible from a browser

SOAPscope Server helps SOA project teams – from design
through support – collaborate effectively and support the busi-
ness need for agility while quickly and easily delivering well-
tested, scalable, and policy compliant services and SOAs.

 Key Strategies for SOA Testing

Mindreef SOAPscope Server Features include:

 Conduct performance and scalability testing with
Mindreef Load Check™

 Author SOA compliance policies with Mindreef
Policy Rules Manager™

 Collaborate across multiple roles and staff with Shared Work-
spaces

 Take a project focus with Service Spaces™

 Easily test outside a production environment with
Named Endpoints

 Automate testing against multiple data sets with data binding

 Drive test automation with Test Suites

 Gain service understanding without XML knowledge,
with Pseudocode View™

 Interact with and understand the behavior of services without
needing to build a UI to drive them (Message Invoke)

 Complete testing throughout the service lifecycle with:

 Unit Testing

 Functional Testing

 Acceptance Testing

 Regression Testing

 Diagnose problems at design-time and run-time

 Point-and click test drive of services

 Achieve test-driven development and test clients and services
with Simulation and Scenario Testing

 Improve WSDL understanding with Contract Overview and
Documentation

SOAPscope Server is available directly from Mindreef, Inc.
Mindreef Load Check and Policy Rules Manager are included with
SOAPscope Server 6.0 or greater. To learn more about product li-
censing and service options or to request an
evaluation copy, call (603) 465-2204 ext. 581, e-mail
sales@mindreef.com, or visit: http://www.mindreef.com.

http://www.mindreef.com

Conclusion

So, does testing change with SOA? You bet it does.

Truth-be-told, testing SOAs is a complex, disconcerting comput-
ing problem. You need to learn how to isolate, check, and inte-
grate, assuring that things work at the service, persistence, and
process layers.

The foundation of SOA testing includes selecting the right tool
for the job, having a well thought out plan, and sparing no ex-
pense in testing cycles or else risk that your SOA will fail out of
the gate and thus have no creditability.

Organizations are beginning to roll out their first instances of
SOA, typically as smaller projects. While many work just fine,
some are not living up to expectations due to quality issues that
could have been prevented with adequate testing. You need to
take these lessons, hard learned by others, and make sure that
testing is high on your priority list when you dive into SOA.

 Key Strategies for SOA Testing

