Oracle® CEP CQL Language Reference 11g Release 1 (11.1.1) Part Number E12048-02 |
|
|
View PDF |
Oracle CQL provides a set of built-in aggregate functions based on the Colt open source libraries for high performance scientific and technical computing.
For more information, see Section 1.1.9, "Functions".
Table 8-1 lists the built-in aggregate Colt functions that Oracle CQL provides.
Table 8-1 Oracle CQL Built-in Aggregate Colt-Based Functions
Colt Package | Function |
---|---|
A set of basic descriptive statistics functions. |
|
Note:
Built-in function names are case sensitive and you must use them in the case shown (in lower case).Note:
In stream input examples, lines beginning withh
(such as h 3800
) are heartbeat input tuples. These inform Oracle CEP that no further input will have a timestamp lesser than the heartbeat value.
In relation output examples, the first tuple output is:
-9223372036854775808:+
This value is -Long.MIN_VALUE()
and represents the largest negative timestamp possible.
For more information, see:
Note that the signatures of the Oracle CQL Colt aggregate functions do not match the signatures of the corresponding Colt aggregate functions.
Consider the following Colt aggregate function:
double autocorrelation(DoubleArrayList data, int lag, double mean, double variance)
In this signature, data
is the Collection
over which aggregates will be calculated and mean
and variance
are the other two parameter aggregates which are required to calculate autoCorrelation
(where mean
and variance
aggregates are calculated on data
).
In Oracle CEP, data
will never come in the form of a Collection
. The Oracle CQL function receives input data in a stream of tuples.
So suppose our stream is defined as S:(double val, integer lag)
. On each input tuple, the Oracle CQL autocorrelation
function will compute two intermediate aggregates, mean
and variance
, and one final aggregate, autocorrelation
.
Since the function expects a stream of tuples having a double
data
value and an integer
lag
value only, the signature of the Oracle CQL autocorrelation
function is:
double autocorrelation (double data, int lag)
Syntax
Purpose
autocorrelation
is based on cern.jet.stat.Descriptive.autoCorrelation(DoubleArrayList data, int lag, double mean, double variance)
. It returns the auto-correlation of a data sequence of the input arguments as a double
.
Note:
This function has semantics different from "lag1"This function takes the following tuple arguments:
double1
: data value.
int1
: lag.
For more information, see
Examples
Consider the query qColtAggr1
in Example 8-1. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-2, the query returns the relation in Example 8-3.
Example 8-1 autocorrelation Function Query
<query id="qColtAggr1"><![CDATA[ select autocorrelation(c3, c1) from SColtAggrFunc ]]></query>
Syntax
Purpose
correlation
is based on cern.jet.stat.Descriptive.correlation(DoubleArrayList data1, double standardDev1, DoubleArrayList data2, double standardDev2)
. It returns the correlation of two data sequences of the input arguments as a double
.
This function takes the following tuple arguments:
double1
: data value 1.
double2
: data value 2.
For more information, see
Examples
Consider the query qColtAggr2
in Example 8-4. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-5, the query returns the relation in Example 8-6.
Example 8-4 correlation Function Query
<query id="qColtAggr2"><![CDATA[ select correlation(c3, c3) from SColtAggrFunc ]]></query>
Syntax
Purpose
covariance
is based on cern.jet.stat.Descriptive.covariance(DoubleArrayList data1, DoubleArrayList data2)
. It returns the correlation of two data sequences (see Figure 8-1) of the input arguments as a double
.
This function takes the following tuple arguments:
double1
: data value 1.
double2
: data value 2.
For more information, see:
Examples
Consider the query qColtAggr3
in Example 8-7. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-8, the query returns the relation in Example 8-9.
Example 8-7 covariance Function Query
<query id="qColtAggr3"><![CDATA[ select covariance(c3, c3) from SColtAggrFunc ]]></query>
Syntax
Purpose
geometricmean
is based on cern.jet.stat.Descriptive.geometricMean(DoubleArrayList data)
. It returns the geometric mean of a data sequence (see Figure 8-2) of the input argument as a double
.
This function takes the following tuple arguments:
double1
: data value.
Note that for a geometric mean to be meaningful, the minimum of the data values must not be less than or equal to zero.
For more information, see:
Examples
Consider the query qColtAggr6
in Example 8-10. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-11, the query returns the relation in Example 8-12.
Example 8-10 geometricmean Function Query
<query id="qColtAggr6"><![CDATA[ select geometricmean(c3) from SColtAggrFunc ]]></query>
Syntax
Purpose
geometricmean1
is based on cern.jet.stat.Descriptive.geometricMean(double sumOfLogarithms)
. It returns the geometric mean of a data sequence (see Figure 8-3) of the input arguments as a double
.
This function takes the following tuple arguments:
double1
: data value.
For more information, see:
Examples
Consider the query qColtAggr7
in Example 8-13. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-14, the query returns the relation in Example 8-15.
Example 8-13 geometricmean1 Function Query
<query id="qColtAggr7"><![CDATA[ select geometricmean1(c3) from SColtAggrFunc ]]></query>
Syntax
Purpose
harmonicmean
is based on cern.jet.stat.Descriptive.harmonicMean(int size, double sumOfInversions)
. It returns the harmonic mean of a data sequence as a double
.
This function takes the following tuple arguments:
double1
: data value.
For more information, see:
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#harmonicMean(int,%20double)
Section 8.1.1, "Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments"
Examples
Consider the query qColtAggr8
in Example 8-16. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-17, the query returns the relation in Example 8-18.
Example 8-16 harmonicmean Function Query
<query id="qColtAggr8"><![CDATA[ select harmonicmean(c3) from SColtAggrFunc ]]></query>
Syntax
Purpose
kurtosis
is based on cern.jet.stat.Descriptive.kurtosis(DoubleArrayList data, double mean, double standardDeviation)
. It returns the kurtosis or excess (see Figure 8-4) of a data sequence as a double
.
Figure 8-4 cern.jet.stat.Descriptive.kurtosis(DoubleArrayList data, double mean, double standardDeviation)
This function takes the following tuple arguments:
double1
: data value.
For more information, see
Examples
Consider the query qColtAggr12
in Example 8-19. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-20, the query returns the relation in Example 8-21.
Example 8-19 kurtosis Function Query
<query id="qColtAggr12"><![CDATA[ select kurtosis(c3) from SColtAggrFunc ]]></query>
Syntax
Purpose
lag1
is based on cern.jet.stat.Descriptive.lag1(DoubleArrayList data, double mean)
. It returns the lag - 1
auto-correlation of a dataset as a double
.
Note:
This function has semantics different from "autocorrelation".This function takes the following tuple arguments:
double1
: data value.
For more information, see
Examples
Consider the query qColtAggr14
in Example 8-22. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-23, the query returns the relation in Example 8-24.
Example 8-22 lag1 Function Query
<query id="qColtAggr14"><![CDATA[ select lag1(c3) from SColtAggrFunc ]]></query>
Syntax
Purpose
mean
is based on cern.jet.stat.Descriptive.mean(DoubleArrayList data)
. It returns the arithmetic mean of a data sequence (see Figure 8-5) as a double
.
This function takes the following tuple arguments:
double1
: data value.
For more information, see:
Examples
Consider the query qColtAggr16
in Example 8-25. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-26, the query returns the relation in Example 8-27.
Example 8-25 mean Function Query
<query id="qColtAggr16"><![CDATA[ select mean(c3) from SColtAggrFunc ]]></query>
Syntax
Purpose
meandeviation
is based on cern.jet.stat.Descriptive.meanDeviation(DoubleArrayList data, double mean)
. It returns the mean deviation of a dataset (see Figure 8-6) as a double
.
This function takes the following tuple arguments:
double1
: data value.
For more information, see
Examples
Consider the query qColtAggr17
in Example 8-28. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-29, the query returns the relation in Example 8-30.
Example 8-28 meandeviation Function Query
<query id="qColtAggr17"><![CDATA[ select meandeviation(c3) from SColtAggrFunc ]]></query>
Syntax
Purpose
median
is based on cern.jet.stat.Descriptive.median(DoubleArrayList sortedData)
. It returns the median of a sorted data sequence as a double
.
This function takes the following tuple arguments:
double1
: data value.
For more information, see:
Examples
Consider the query qColtAggr18
in Example 8-31. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-32, the query returns the relation in Example 8-33.
Example 8-31 median Function Query
<query id="qColtAggr18"><![CDATA[ select median(c3) from SColtAggrFunc ]]></query>
Syntax
Purpose
moment
is based on cern.jet.stat.Descriptive.moment(DoubleArrayList data, int k, double c)
. It returns the moment of the k
-th order with constant c
of a data sequence (see Figure 8-7) as a double
.
This function takes the following tuple arguments:
double1
: data value.
int1
: k
.
double2
: c
.
For more information, see:
Examples
Consider the query qColtAggr21
in Example 8-34. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-35, the query returns the relation in Example 8-36.
Example 8-34 moment Function Query
<query id="qColtAggr21"><![CDATA[ select moment(c3, c1, c3) from SColtAggrFunc ]]></query>
Syntax
Purpose
pooledmean
is based on cern.jet.stat.Descriptive.pooledMean(int size1, double mean1, int size2, double mean2)
. It returns the pooled mean of two data sequences (see Figure 8-8) as a double
.
This function takes the following tuple arguments:
double1
: mean 1.
double2
: mean 2.
For more information, see
Examples
Consider the query qColtAggr22
in Example 8-37. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-38, the query returns the relation in Example 8-39.
Example 8-37 pooledmean Function Query
<query id="qColtAggr22"><![CDATA[ select pooledmean(c3, c3) from SColtAggrFunc ]]></query>
Syntax
Purpose
pooledvariance
is based on cern.jet.stat.Descriptive.pooledVariance(int size1, double variance1, int size2, double variance2)
. It returns the pooled variance of two data sequences (see Figure 8-9) as a double
.
Figure 8-9 cern.jet.stat.Descriptive.pooledVariance(int size1, double variance1, int size2, double variance2)
This function takes the following tuple arguments:
double1
: variance 1.
double2
: variance 2.
For more information, see
Examples
Consider the query qColtAggr23
in Example 8-40. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-41, the query returns the relation in Example 8-42.
Example 8-40 pooledvariance Function Query
<query id="qColtAggr23"><![CDATA[ select pooledvariance(c3, c3) from SColtAggrFunc ]]></query>
Syntax
Purpose
product
is based on cern.jet.stat.Descriptive.product(DoubleArrayList data)
. It returns the product of a data sequence (see Figure 8-10) as a double
.
This function takes the following tuple arguments:
double1
: data value.
For more information, see:
Examples
Consider the query qColtAggr24
in Example 8-43. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-44, the query returns the relation in Example 8-45.
Example 8-43 product Function Query
<query id="qColtAggr24"><![CDATA[ select product(c3) from SColtAggrFunc ]]></query>
Syntax
Purpose
quantile
is based on cern.jet.stat.Descriptive.quantile(DoubleArrayList sortedData, double phi)
. It returns the phi-quantile as a double
; that is, an element elem
for which holds that phi percent of data elements are less than elem
.
This function takes the following tuple arguments:
double1
: data value.
double2
: phi; the percentage; must satisfy 0 <= phi <= 1
.
For more information, see:
Examples
Consider the query qColtAggr26
in Example 8-46. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-47, the query returns the relation in Example 8-48.
Example 8-46 quantile Function Query
<query id="qColtAggr26"><![CDATA[ select quantile(c3, c2) from SColtAggrFunc ]]></query>
Syntax
Purpose
quantileinverse
is based on cern.jet.stat.Descriptive.quantileInverse(DoubleArrayList sortedList, double element)
. It returns the percentage phi of elements <= element
(0.0 <= phi <= 1.0
) as a double
. This function does linear interpolation if the element
is not contained but lies in between two contained elements.
This function takes the following tuple arguments:
double1
: data.
double2
: element
.
For more information, see:
Examples
Consider the query qColtAggr27
in Example 8-49. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-50, the query returns the relation in Example 8-51.
Example 8-49 quantileinverse Function Query
<query id="qColtAggr27"><![CDATA[ select quantileinverse(c3, c3) from SColtAggrFunc ]]></query>
Syntax
Purpose
rankinterpolated
is based on cern.jet.stat.Descriptive.rankInterpolated(DoubleArrayList sortedList, double element)
. It returns the linearly interpolated number of elements in a list less or equal to a given element
as a double.
The rank is the number of elements <= element
. Ranks are of the form{0, 1, 2,..., sortedList.size()}
. If no element is <= element
, then the rank is zero. If the element lies in between two contained elements, then linear interpolation is used and a non-integer value is returned.
This function takes the following tuple arguments:
double1
: data value.
double2
: element
.
For more information, see:
Examples
Consider the query qColtAggr29
in Example 8-52. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-53, the query returns the relation in Example 8-54.
Example 8-52 rankinterpolated Function Query
<query id="qColtAggr29"><![CDATA[ select rankinterpolated(c3, c3) from SColtAggrFunc ]]></query>
Syntax
Purpose
rms
is based on cern.jet.stat.Descriptive.rms(int size, double sumOfSquares)
. It returns the Root-Mean-Square (RMS) of a data sequence (see Figure 8-11) as a double
.
This function takes the following tuple arguments:
double1
: data value.
For more information, see
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#rms(int,%20double)
Section 8.1.1, "Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments"
Examples
Consider the query qColtAggr30
in Example 8-55. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-56, the query returns the relation in Example 8-57.
Example 8-55 rms Function Query
<query id="qColtAggr30"><![CDATA[ select rms(c3) from SColtAggrFunc ]]></query>
Syntax
Purpose
samplekurtosis
is based on cern.jet.stat.Descriptive.sampleKurtosis(DoubleArrayList data, double mean, double sampleVariance)
. It returns the sample kurtosis (excess) of a data sequence as a double
.
This function takes the following tuple arguments:
double1
: data value.
For more information, see:
Examples
Consider the query qColtAggr31
in Example 8-58. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-59, the query returns the relation in Example 8-60.
Example 8-58 samplekurtosis Function Query
<query id="qColtAggr31"><![CDATA[ select samplekurtosis(c3) from SColtAggrFunc ]]></query>
Syntax
Purpose
samplekurtosisstandarderror
is based on cern.jet.stat.Descriptive.sampleKurtosisStandardError(int size)
. It returns the standard error of the sample Kurtosis as a double
.
This function takes the following tuple arguments:
int1
: data value.
For more information, see:
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#sampleKurtosisStandardError(int)
Section 8.1.1, "Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments"
Examples
Consider the query qColtAggr33
in Example 8-61. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-62, the query returns the relation in Example 8-63.
Example 8-61 samplekurtosisstandarderror Function Query
<query id="qColtAggr33"><![CDATA[ select samplekurtosisstandarderror(c1) from SColtAggrFunc ]]></query>
Syntax
Purpose
sampleskew
is based on cern.jet.stat.Descriptive.sampleSkew(DoubleArrayList data, double mean, double sampleVariance)
. It returns the sample skew of a data sequence as a double
.
This function takes the following tuple arguments:
double1
: data value.
For more information, see:
Examples
Consider the query qColtAggr34
in Example 8-64. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-65, the query returns the relation in Example 8-66.
Example 8-64 sampleskew Function Query
<query id="qColtAggr34"><![CDATA[ select sampleskew(c3) from SColtAggrFunc ]]></query>
Syntax
Purpose
sampleskewstandarderror
is based on cern.jet.stat.Descriptive.sampleSkewStandardError(int size)
. It returns the standard error of the sample skew as a double
.
This function takes the following tuple arguments:
double1
: data value.
For more information, see:
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#sampleSkewStandardError(int)
Section 8.1.1, "Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments"
Examples
Consider the query qColtAggr36
in Example 8-67. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-68, the query returns the relation in Example 8-69.
Example 8-67 sampleskewstandarderror Function Query
<query id="qColtAggr36"><![CDATA[ select sampleskewstandarderror(c1) from SColtAggrFunc ]]></query>
Syntax
Purpose
samplevariance
is based on cern.jet.stat.Descriptive.sampleVariance(DoubleArrayList data, double mean)
. It returns the sample variance of a data sequence (see Figure 8-12) as a double
.
This function takes the following tuple arguments:
double1
: data value.
For more information, see:
Examples
Consider the query qColtAggr38
in Example 8-70. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-71, the query returns the relation in Example 8-72.
Example 8-70 samplevariance Function Query
<query id="qColtAggr38"><![CDATA[ select samplevariance(c3) from SColtAggrFunc ]]></query>
Syntax
Purpose
skew
is based on cern.jet.stat.Descriptive.skew(DoubleArrayList data, double mean, double standardDeviation)
. It returns the skew of a data sequence of a data sequence (see Figure 8-13) as a double
.
Figure 8-13 cern.jet.stat.Descriptive.skew(DoubleArrayList data, double mean, double standardDeviation)
This function takes the following tuple arguments:
double1
: data value.
For more information, see:
Examples
Consider the query qColtAggr41
in Example 8-73. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-74, the query returns the relation in Example 8-75.
Example 8-73 skew Function Query
<query id="qColtAggr41"><![CDATA[ select skew(c3) from SColtAggrFunc ]]></query>
Syntax
Purpose
standarddeviation
is based on cern.jet.stat.Descriptive.standardDeviation(double variance)
. It returns the standard deviation from a variance as a double
.
This function takes the following tuple arguments:
double1
: data value.
For more information, see
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#standardDeviation(double)
Section 8.1.1, "Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments"
Examples
Consider the query qColtAggr44
in Example 8-76. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-77, the query returns the relation in Example 8-78.
Example 8-76 standarddeviation Function Query
<query id="qColtAggr44"><![CDATA[ select standarddeviation(c3) from SColtAggrFunc ]]></query>
Syntax
Purpose
standarderror
is based on cern.jet.stat.Descriptive.standardError(int size, double variance)
. It returns the standard error of a data sequence (see Figure 8-14) as a double
.
Figure 8-14 cern.jet.stat.Descriptive.cern.jet.stat.Descriptive.standardError(int size, double variance)
This function takes the following tuple arguments:
double1
: data value.
For more information, see
http://acs.lbl.gov/~hoschek/colt/api/cern/jet/stat/Descriptive.html#standardError(int,%20double)
Section 8.1.1, "Oracle CQL Colt Aggregate Function Signatures and Tuple Arguments"
Examples
Consider the query qColtAggr45
in Example 8-79. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-80, the query returns the relation in Example 8-81.
Example 8-79 standarderror Function Query
<query id="qColtAggr45"><![CDATA[ select standarderror(c3) from SColtAggrFunc ]]></query>
Syntax
Purpose
sumofinversions
is based on cern.jet.stat.Descriptive.sumOfInversions(DoubleArrayList data, int from, int to)
. It returns the sum of inversions of a data sequence (see Figure 8-15) as a double
.
This function takes the following tuple arguments:
double1
: data value.
For more information, see:
Examples
Consider the query qColtAggr48
in Example 8-82. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-83, the query returns the relation in Example 8-84.
Example 8-82 sumofinversions Function Query
<query id="qColtAggr48"><![CDATA[ select sumofinversions(c3) from SColtAggrFunc ]]></query>
Syntax
Purpose
sumoflogarithms
is based on cern.jet.stat.Descriptive.sumOfLogarithms(DoubleArrayList data, int from, int to)
. It returns the sum of logarithms of a data sequence (see Figure 8-16) as a double
.
This function takes the following tuple arguments:
double1
: data value.
For more information, see:
Examples
Consider the query qColtAggr49
in Example 8-85. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-86, the query returns the relation in Example 8-87.
Example 8-85 sumoflogarithms Function Query
<query id="qColtAggr49"><![CDATA[ select sumoflogarithms(c3) from SColtAggrFunc ]]></query>
Syntax
Purpose
sumofpowerdeviations
is based on cern.jet.stat.Descriptive.sumOfPowerDeviations(DoubleArrayList data, int k, double c)
. It returns sum of power deviations of a data sequence (see Figure 8-17) as a double
.
This function is optimized for common parameters like c == 0.0
, k == -2 .. 4
, or both.
This function takes the following tuple arguments:
double1
: data value.
int1
: k
.
double2
: c
.
For more information, see:
Examples
Consider the query qColtAggr50
in Example 8-88. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-89, the query returns the relation in Example 8-90.
Example 8-88 sumofpowerdeviations Function Query
<query id="qColtAggr50"><![CDATA[ select sumofpowerdeviations(c3, c1, c3) from SColtAggrFunc ]]></query>
Syntax
Purpose
sumofpowers
is based on cern.jet.stat.Descriptive.sumOfPowers(DoubleArrayList data, int k)
. It returns the sum of powers of a data sequence (see Figure 8-18) as a double
.
This function takes the following tuple arguments:
double1
: data value.
int1
: k
.
For more information, see:
Examples
Consider the query qColtAggr52
in Example 8-91. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-92, the query returns the relation in Example 8-93.
Example 8-91 sumofpowers Function Query
<query id="qColtAggr52"><![CDATA[ select sumofpowers(c3, c1) from SColtAggrFunc ]]></query>
Syntax
Purpose
sumofsquareddeviations
is based on cern.jet.stat.Descriptive.sumOfSquaredDeviations(int size, double variance)
. It returns the sum of squared mean deviation of a data sequence (see Figure 8-19) as a double
.
This function takes the following tuple arguments:
double1
: data value.
For more information, see
Examples
Consider the query qColtAggr53
in Example 8-94. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-95, the query returns the relation in Example 8-96.
Example 8-94 sumofsquareddeviations Function Query
<query id="qColtAggr53"><![CDATA[ select sumofsquareddeviations(c3) from SColtAggrFunc ]]></query>
Syntax
Purpose
sumofsquares
is based on cern.jet.stat.Descriptive.sumOfSquares(DoubleArrayList data)
. It returns the sum of squares of a data sequence (see Figure 8-20) as a double
.
This function takes the following tuple arguments:
double1
: data value.
For more information, see:
Examples
Consider the query qColtAggr54
in Example 8-97. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-98, the query returns the relation in Example 8-99.
Example 8-97 sumofsquares Function Query
<query id="qColtAggr54"><![CDATA[ select sumofsquares(c3) from SColtAggrFunc ]]></query>
Syntax
Purpose
trimmedmean
is based on cern.jet.stat.Descriptive.trimmedMean(DoubleArrayList sortedData, double mean, int left, int right)
. It returns the trimmed mean of an ascending sorted data sequence as a double
.
This function takes the following tuple arguments:
double1
: data value.
int1
: left
.
int2
: right
.
For more information, see:
Examples
Consider the query qColtAggr55
in Example 8-100. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-101, the query returns the relation in Example 8-102.
Example 8-100 trimmedmean Function Query
<query id="qColtAggr55"><![CDATA[ select trimmedmean(c3, c1, c1) from SColtAggrFunc ]]></query>
Syntax
Purpose
variance
is based on cern.jet.stat.Descriptive.variance(int size, double sum, double sumOfSquares)
. It returns the variance of a data sequence (see Figure 8-21) as a double
.
This function takes the following tuple arguments:
double1
: data value.
For more information, see:
Examples
Consider the query qColtAggr57
in Example 8-103. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-104, the query returns the relation in Example 8-105.
Example 8-103 variance Function Query
<query id="qColtAggr57"><![CDATA[ select variance(c3) from SColtAggrFunc ]]></query>
Syntax
Purpose
weightedmean
is based on cern.jet.stat.Descriptive.weightedMean(DoubleArrayList data, DoubleArrayList weights)
. It returns the weighted mean of a data sequence (see Figure 8-22) as a double
.
This function takes the following tuple arguments:
double1
: data value.
double2
: weight value.
For more information, see:
Examples
Consider the query qColtAggr58
in Example 8-106. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-107, the query returns the relation in Example 8-108.
Example 8-106 weightedmean Function Query
<query id="qColtAggr58"><![CDATA[ select weightedmean(c3, c3) from SColtAggrFunc ]]></query>
Syntax
Purpose
winsorizedmean
is based on cern.jet.stat.Descriptive.winsorizedMean(DoubleArrayList sortedData, double mean, int left, int right)
. It returns the winsorized mean of a sorted data sequence as a double
.
This function takes the following tuple arguments:
double1
: data value.
int1
: left
.
int2
: right
.
For more information, see:
Examples
Consider the query qColtAggr60
in Example 8-109. Given the data stream SColtAggrFunc
with schema (c1 integer, c2 float, c3 double, c4 bigint)
in Example 8-110, the query returns the relation in Example 8-111.
Example 8-109 winsorizedmean Function Query
<query id="qColtAggr60"><![CDATA[ select winsorizedmean(c3, c1, c1) from SColtAggrFunc ]]></query>