|
Oracle Data Mining Java API Reference 10g Release 1 (10.1) B12276-01 | |||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Object | +--oracle.dmt.odm.MiningObject | +--oracle.dmt.odm.settings.algorithm.MiningAlgorithmSettings | +--oracle.dmt.odm.settings.algorithm.ClusteringAlgorithmSettings | +--oracle.dmt.odm.settings.algorithm.KMeansAlgorithmSettings
An instance of KMeansAlgorithmSettings
is used to specify settings for the KMeans clustering algorithm. It allows a knowledgeable user to fine tune algorithm parameters. Generally, not all parameters must be specified, however, those specified are taken into account by the underlying DMS. ODM 9.2.0 implements a hierarchical version of the K-Means algorithm. The tree is grown one node at the time. The node with the largest distortion (sum of distance to the node's centroid) is split to increase the size of the tree until the desired number of clusters is reached.
Constructor Summary | |
KMeansAlgorithmSettings() Creates a KMeansAlgorithmSettings default settings object. | |
KMeansAlgorithmSettings(float error, DistanceFunction distanceFunction) | |
KMeansAlgorithmSettings(int iterations, DistanceFunction distanceFunction) | |
KMeansAlgorithmSettings(int iterations, float error, DistanceFunction distanceFunction) Creates a KMeansAlgorithmSettings object with the maximum number of K-Means iterations between splits set to iterations , the minimum percentual change in error between K-Means iterations set to error , and the distance function to be used to train a K-Means set to distanceFunction . |
Method Summary | |
DistanceFunction |
getDistanceFunction() Returns the DistanceFunction specified by a KMeansAlgorithmSettings object to train a K-Means ClusteringModel . |
int |
getMaxNumberOfIterations() Returns the maxNumberOfIterations specified by a KMeansAlgorithmSettings object to train a K-Means ClusteringModel . |
float |
getMinimumErrorTolerance() Returns the minimumErrorTolerance specified by a KMeansAlgorithmSettings object to train a K-Means ClusteringModel . |
ClusteringStoppingCriterion |
getStopCriterion() |
void |
setDistanceFunction(DistanceFunction distanceFunction) Sets the distance function to be used to train a K-Means ClusteringModel . |
void |
setMaxNumberOfIterations(int maxIter) Sets the maximum number of K-Means iterations between splits while training a K-Means ClusteringModel . |
void |
setMinErrorTolerance(float minError) Sets the minimum percentual change in error between K-Means iterations to consider that K-Means has converged. |
void |
setStopCriterion(ClusteringStoppingCriterion stopCriterion) |
Methods inherited from class oracle.dmt.odm.settings.algorithm.MiningAlgorithmSettings |
getMiningAlgorithm, getMiningAlgorithmName |
Methods inherited from class java.lang.Object |
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Constructor Detail |
public KMeansAlgorithmSettings(int iterations, DistanceFunction distanceFunction) throws InvalidArgumentException
InvalidArgumentException
-
public KMeansAlgorithmSettings(float error, DistanceFunction distanceFunction) throws InvalidArgumentException
error
- Minimum error tolerance. Recommended value: 0.05distanceFunction
- Distance functionInvalidArgumentException
-
public KMeansAlgorithmSettings(int iterations, float error, DistanceFunction distanceFunction) throws InvalidArgumentException
KMeansAlgorithmSettings
object with the maximum number of K-Means iterations between splits set to iterations
, the minimum percentual change in error between K-Means iterations set to error
, and the distance function to be used to train a K-Means set to distanceFunction
. iterations
is a number between 1 and 100. error
is a number between 0 and 1. Training stops after either the change in error between two consecutive iterations is less than error
or the maximum number of iterations over the data in the buffer is greater than iterations
.InvalidArgumentException
-
public KMeansAlgorithmSettings()
KMeansAlgorithmSettings
default settings object.Method Detail |
public float getMinimumErrorTolerance()
minimumErrorTolerance
specified by a KMeansAlgorithmSettings
object to train a K-Means ClusteringModel
. The minimumErrorTolerance
setting controls the minimum percentual change in error between K-Means iterations to considered that K-Means has converged. minimumErrorTolerance
is a number between 0 and 1.public DistanceFunction getDistanceFunction()
DistanceFunction
specified by a KMeansAlgorithmSettings
object to train a K-Means ClusteringModel
.DistanceFunction
for ClusteringModel
training.public ClusteringStoppingCriterion getStopCriterion()
ClusteringStoppingCriterion
for ClusteringModel
training.public int getMaxNumberOfIterations()
maxNumberOfIterations
specified by a KMeansAlgorithmSettings
object to train a K-Means ClusteringModel
. The maxNumberOfIterations
setting controls the maximum number of K-Means iterations between splits while training a K-Means ClusteringModel
. maxNumberOfIterations
is a number between 1 and 100.public void setMaxNumberOfIterations(int maxIter) throws InvalidArgumentException
ClusteringModel
. maxIter
is a number between 1 and 100.maxIter
- Maximum number of iterationsInvalidArgumentException
- when maxIter > 100 or maxIter < 1.public void setMinErrorTolerance(float minError) throws InvalidArgumentException
minError
is a number between 0 and 1.minError
- Minimum percentual change in errorInvalidArgumentException
- when minError > 1 or minError < 0public void setDistanceFunction(DistanceFunction distanceFunction)
ClusteringModel
.distanceFunction
- Distance function used to train a K-Means ClusteringModel
public void setStopCriterion(ClusteringStoppingCriterion stopCriterion)
|
| |||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |