|
Oracle Data Mining Java API Reference 10g Release 1 (10.1) B12276-01 | |||||||||
PREV NEXT | FRAMES NO FRAMES |
ABNMiningRule
represents a rule as produced from the Adaptive Bayes Network Model.ABNModelBuildState
is used to specify the AdaptiveBayesNetworkModel
build state.ABNModelBuildType
is used to specify the AdaptiveBayesNetworkModel
build type.AdaptiveBayesNetworkModel
contains the metadata and rules tables from a model build.AdaptiveBayesNetworkSettings
is used to specify settings for the Adaptive Bayes Network algorithm.AdaptiveBayesNetworkSettings
default settings object.CostMatrix.addEntry()
methodaddEntry(Category target, Object probability)
method.ApplyContentItem
.ItemValue
to the itemset.DataUsageEntry
to this data usage specification.MiningFunctionSettings.adjustAttributesType
method.MiningApplyTask
to perform apply mining operation on a database table.MiningApplyTask
to perform apply mining operation on a database table.RecordInstance
.RecordInstance
.RecordInstance
.RecordInstance
.RecordInstance
.RecordInstance
.RecordInstance
.RecordInstance
.ApplyContentItem
represents an item to be included as part of the apply output.ApplyMultipleScoringItem
with nPair=1
and useTop=true
. The prediction column (predAttr
) must be provided, while the probability column (probAttr
) is still optional. The sequence ID is included in the apply output table by default if the input data is transactional.ApplyContentOptionItem
with the specified ApplyResultContentOption
.ApplyMultipleScoringItem
is an element to construct a MiningApplyOutput
object that is used as specification of the apply output.ApplyMultipleScoringItem
object with all score/probability pairs and the destination columns to appear in the apply output table.ApplyMultipleScoringItem
object with the number of top n score/probability pairs and the destination columns to appear in the apply output table.ApplyMultipleScoringItem
with the number of score/probability pairs to be predicted, the destination columns to appear in the output table, and the indicator as to whether to choose from the top or the bottom.ApplyContentOptionItem
.ApplyRuleItem
is used to construct a MiningApplyOutput
object used for the AdaptiveBayesNetwork apply mining operation.ApplyRuleItem
with the specified rule attribute.ApplySourceAttributeItem
is used to construct a MiningApplyOutput
object used for the apply mining operation.ApplySourceAttributeItem
with the specified source attribute and destination attribute.ApplyTargetProbabilityItem
contains a set of target values whose prediction and probability are to appear in the apply output table, regardless rank.ApplyTargetProbabilityItem
.AprioriAlgorithmSettings
is used to specify settings for the Apriori Algorithm.AprioriAlgorithmSettings
AssociationRulesFunctionSettings
describes settings for an association rules model.AssociationRulesModel
is a Java representation of the association rules model.Attribute
maps to a column with a name and datatype.AttributeHistogram
contains metadata used to describe one-dimensional (single attribute) histograms.AttributeHistogram
object for a given attribute.AttributeImportanceAlgorithmSettings
is the common superclass of all attribute importance algorithms and is used to specify parameters specific to Attribute Importance algorithms.AttributeImortanceEntry
class represents an attribute with its importance found by running an attribute importance algorithm.AttributeImportanceFunctionSettings
describes the settings for Attribute Importance function that captures the high-level specification for building an attribute importance model.AttributeImportanceModel
is a Java representation of the attribute importance model.AttributeInstance
supports providing named and typed values as input for various functions.AttributeType
is used to specify whether a mining attribute is categorical or numerical.AttributeUsage
is used to specify how an attribute is used for a mining operation.BooleanOperator
is used to specify the boolean operator that is used in a CompoundPredicate
instance.BooleanPredicate
always returns the value TRUE.MiningBuildTask
to build a mining model.MiningAttribute
as categorical.CategoricalDiscretization
allows a user to specify category groups or use automated discretization (binning) involving the N most frequent items.CategoricalDiscretization
instance with the specified category groups.CategoricalDiscretization
instance with topNFrequencies
and the "Other" category name.Category
represents a value of a categorical attribute, for example, the value "blue" of attribute "color", or number "5" of the attribute "rating".Category
instance with display name set to the string representation of the boolean, true
or false
.Category
instance with display name set to the string representation of the float.Category
instance with display name set to the string representation of the int.Category
instance with display name set to the string representation of the value.Category
instance with display name set to the value.Category
instance accepting the value as a string with the data type is used for the display name.Category
instance with the provided display name.Category
instance with the provided display name.Category
instance with the provided display name.Category
instance with the provided display name value and data type.CategoryMatrix
represents a sparse square matrix whose axes are categories.CategoryMatrix
.CategorySet
represents a group of categories associated with a single mining attribute.CategorySet
instance accepting the name and the datatype.ClassificationFunctionSettings
describes the settings necessary to build a classification model.accuracy
is not supported. Use other constructor without accuracy parameter.accuracy
is not supported. Use other constructor without accuracy parameter.ClassificationFunctionSettings
object.ClassificationFunctionSettings
object.ClassificationTestResult
represents the result of the test operation for a classification model.ClassificationTestTask
is used for testing a model on test data.Cluster
holds the metadata about a cluster in a CluteringModel
.ClusterCentroid
holds metadata about the centroid of a cluster.ClusterCentroidEntry
contains one attribute and value pair for a cluster centroid.ClusteringAlgorithmSettings
is used to specify optional parameters common to clustering algorithm.ClusteringFunctionSettings
holds metadata for required settings common to all clustering algorithms.ClusteringFunctionSettings
object using the default clustering MiningAlgorithmSettings
.ClusteringFunctionSettings
object using the clustering MiningAlgorithmSettings
specified by mas
.ClusteringModel
holds the metadata of the result of a trained clustering model.ClusteringStoppingCriterion
is used to represent the stopping criteria used by clustering models.CombinationAdaptiveBayesNetworkSettings
object.CombinationNaiveBayesSettings
object.ComparisonFunction
is used to specify the comparison function for the Predicate
interface.CompundPredicate
is a set of predicates connected by logical operators.MiningLiftTask
to perform the compute lift mining operation.ConditionalProbabilityExpression
contains the probability of a consequent conditioned on an array of antecedent values.Connection
defines methods to communicate with a Data Mining Server (DMS) in an Oracle database.CostMatrix
.AttributeImportanceFunctionSettings
from the specified parameters.AssociationRulesFunctionSettings
from the specified parameters.ClassificationFunctionSettings
from the specified parameters.RegressionFunctionSettings
from the specified parameters.LogicalDataSpecification
with the default settings based on the database table specified in the input.AssociationRulesFunctionSettings
from the specified parameters.DataUsageSpecification
instance with the specified LogicalDataSpecification
, default AttributeUsage
, and default DataPreparationStatus
for all attributes in the LogicalDataSpecification
.DataUsageSpecification
instance with the specified LogicalDataSpecification
, default AttributeUsage
, default DataPreparationStatus
, and the target attribute.create
methods.DiscretizationSpecification
objects for the provided attributes.DiscretizationSpecification
objects for the provided attributes.create
method.DataUsageSpecification
instance with the specified attribute as a target attribute.CrossValidateTask
provides an additional technique for measuring the accuracy of a predictive model.DataFormatType
indicates whether the phisical data is specified in the transactional form.DataMiningServer
is used as a proxy to create connections to a Data Mining Server.DataType
is used to specify whether the data type of an attribute is integer, float, character, string, boolean or unstructured.DataUsageEntry
specifies how to use a particular mining attribute in the LogicalDataSpecification
of a given MiningFunctionSettings
DataUsageEntry
for the mining attribute with the specified usage type.DataUsageEntry
for the mining attribute with the specified usage type and preparation status.DataUsageSpecification
is used to specify how the attributes in a LogicalDataSpecification
instance are used for building a mining model.DataUsageSpecification
instance with no data usage entries specified.DiscretizationSpecification
contains discretization details for a single attribute.DiscretizationSpecification
object.discretize
method.DistanceFunction
is used to represent the distance functions used by clustering models.error
stopping criterion.errorAndIterations
stopping criterion.ErrorMetric
that is used by support vector machines (SVM) RegressionFunctionSettings.euclidean
distance function.LocationAcessData
instances are equal if all attribues are exact matches.ExecutionHandle
serves as a handle for the application that can be used to monitor or cancel a task execution.FeatureExtractionAlgorithmSettings
is used to specify optional parameters common to feature extraction algorithm.FeatureExtractionFunctionSettings
describes settings for Feature Extraction functions.FeatureExtractionFunctionSettings
object.MiningAttribute
s.ApplyContentOptionItem
objects contained in this object.ApplyMultipleScoringItem
objects contained in this object.ApplyContentItem
objects contained in this object.ApplyResultContentOption
.ApplyRuleItem
object contained in this object.ApplySourceAttributeItem
objects contained in this object.ApplyTargetProbabilityItem
objects contained to this object.MiningAttribute
associated with the histogram.ClusterCentroidEntry
.DataUsageEntry
.MiningAttribute
specified by attrName
, the AttributeHistogram
for the cluster identified by clusterID
.attrName
.AttributeImportanceEntry
objects in the model, each of which contains an attribute name, its importance value, and its rank.AttributeImportanceEntry
objectsAttributeImportanceEntry
objects based on the threshold specified for attribute importance value, given the connection to the data mining server and the model name.BooleanOperator
.PhysicalDataSpecification
object used to build the model.categoryGroups
in the categorical discretization.Cluster
objects that are children of the cluster node.TreeNode
s associated with this tree node.ClassificationFunctionSettings
object used to build this entry's model.ClusterCentroid
object associated with a cluster.MiningRuleSet
with rules representing the ClusteringModel
's clusters.MiningRuleSet
with rules, with at most maxAttributeRelevanceRank
antecedents, representing the ClusteringModel
's clusters.MiningRuleSet
with rules, with at most maxAttributeRelevanceRank
antecedents, representing the ClusteringModel
's clusters.Vector
of Cluster
objects.ComparisonFunction
.MiningLiftResult
object for this entry's model.MiningAttribute
.DataPreparationStatus
enum value of the DataUsageEntry
.Category
.DataUsageSpecification
instance.DataUsageEntry
instance associated with specifed named attribute.TreeNode
s forming a decision tree.NetworkFeature
.accuracy
is not used.Category
.DistanceFunction
specified by a KMeansAlgorithmSettings
object to train a K-Means ClusteringModel
.getExecutionDuration
method.Vector
of ClusterCentroidEntry
objects.MiningAttribute
.NetworkFeature
if the NetworkFeature
was not scored, otherwise it returns the actual scoring time.PhysicalDataSpecification
object used to test and calculate lift for the model.NetworkFeature
number.NetworkFeature
scoring time.float
, return the stored float value.ABNModelBuildState
enumeration object corresponding to the specified ID.ABNModelBuildType
enumeration object corresponding to the specified ID.ApplyResultContentOption
enumeration that corresponds to the specified identifier.AttributeType
enumeration object corresponding to the specified ID.AttributeUsage
enumeration object corresponding to the specified ID.BooleanOperator
enumeration object corresponding to the specified ID.ClusteringStoppingCriterion
enumeration object corresponding to the specified ID.ComparisonFunction
enumeration that corresponds to the specified identifier.DataFormatType
enumeration object corresponding to the specified ID.DataPreparationStatus
enumeration object corresponding to the specified ID.DataType
enumeration object corresponding to the specified ID.DistanceFunction
enumeration object corresponding to the specified ID.ErrorMetric
enumeration object corresponding to the specified id.LocationEqualityLevel
enumeration object corresponding to the specified ID.MiningAlgorithm
enumeration object corresponding to the specified ID.MiningFunction
enumeration that corresponds to the specified identifier.MiningStandardType
enumeration object corresponding to the specified ID.MiningTaskState
enumeration object corresponding to the specified ID.MiningTaskType
enumeration that corresponds to the specified identifier.Normalization
enumeration object corresponding to the specified ID.PairCombinationsOption
enumeration object corresponding to the specified ID.RuleAnnotationType
enumeration object corresponding to the specified ID.RuleSortCriteria
enumeration that corresponds to the specified identifier.SortOrder
enumeration that corresponds to the specified identifier.SparsitySpecification
enumeration object corresponding to the specified ID.UsageAdjustment
enumeration that corresponds to the specified identifier.ABNModelBuildState
enumeration object corresponding to the specified name.ABNModelBuildType
enumeration object corresponding to the specified name.ApplyResultContentOption
enumeration that corresponds to the specified name.AttributeType
enumeration object corresponding to the specified name.AttributeUsage
enumeration object corresponding to the specified name.BooleanOperator
enumeration object corresponding to the specified name.ClusteringStoppingCriterion
enumeration object corresponding to the specified name.ComparisonFunction
enumeration object corresponding to the specified name.DataFormatType
enumeration object corresponding to the specified name.DataPreparationStatus
enumeration object corresponding to the specified name.DataType
enumeration object corresponding to the specified name.DistanceFunction
enumeration object corresponding to the specified name.ErrorMetric
enumeration object corresponding to the specified name.LocationEqualityLevel
enumeration object corresponding to the specified name.MiningAlgorithm
enumeration object corresponding to the specified name.MiningFunction
enumeration that corresponds to the specified name.MiningStandardType
enumeration object corresponding to the specified name.MiningTaskState
enumeration object corresponding to the specified name.MiningTaskType
enumeration that corresponds to the specified name.Normalization
enumeration object corresponding to the specified name.PairCombinationsOption
enumeration object corresponding to the specified name.RuleAnnotationType
enumeration object corresponding to the specified name.RuleSortCriteria
enumeration that corresponds to the specified name.SortOrder
enumeration that corresponds to the specified name.SparsitySpecification
enumeration object corresponding to the specified name.UsageAdjustment
enumeration that corresponds to the specified name.int
, return the stored integer value.MiningAttribute
which is the subject of the comparison.ItemValue
s.Cluster
IDs.Vector
of Cluster
objects.Cluster
object.LocationAccessData
instance identifying where the source data resides.getMaxPredictors
and getNaiveBayesNumPredictors
.maxNumberOfIterations
specified by a KMeansAlgorithmSettings
object to train a K-Means ClusteringModel
.minimumErrorTolerance
specified by a KMeansAlgorithmSettings
object to train a K-Means ClusteringModel
.MiningAlgorithm
used to build this model.MiningAlgorithmSettings
objects.Category
value associated with the mining attribute.MiningFunction
used to build this model.MiningFunctionSettings
used to build this model.ABNModelBuildState
instance indicating the model build state.ModelSeekerResultEntry
objects.NetworkFeature
s.ClusteringModel
.Cluster
.TreeNode
of this tree node.Category
for the positive target value.Predicate
, if any, characterizing the relation between the node and its children.Predicate
.Predicate
sClusteringModel
's root Cluster
object.ABNMiningRule
associated with the rule id.MiningRuleSet
.MiningRuleSet
that contains the specified number of rules sorted in the specified order (confidence or support).MiningRuleSet
that contains the specified number of rules sorted in the specified order (confidence or support).getRules
method with the following parameters.
dmsConn
modelName
selectionCriterion=RuleSortCriteria.confidence
selectionFunction=ComparisonFunction.ge
selectionPoint=confidence threshold value
ruleOrder=null
sortOrder=null
maxNumRules
MiningRuleSet
that contains the specified items as antecedent and consequent.MiningRuleSet
that contains the specified number of rules sorted in the specified order (confidence or support).MiningRuleSet
associated with the array of rule ids.getRules
method with the following parameters.
dmsConn
modelName
selectionCriterion=RuleSortCriteria.support
selectionFunction=ComparisonFunction.ge
selectionPoint=support threshold value
ruleOrder=null
sortOrder=null
maxNumRules
sensitivity
specified in the OCluster algorithm settings.SplitPredicate
object that stores information on how records are assigned to the cluster node's children.String
, return the stored String value; otherwise return null.CategorySet
getNumberOfPriors
MiningTestResult
object for this entry's model.MiningTaskStatus
instance.AttributeUsage
enum value used for the mining attribute.Category
.ClusterCentroidEntry
.Category
value to which the mining attribute value is compared.Object getValue(Category target)
method.Category
and column Category
position.AttrributeInstance
with the given name.NetworkFeature
was accepted or rejected by the MDL pruning criteria.LocationAccessData
.true
if the given index value is found in the matrix.NetworkFeature
met termination criteria or whether the NetworkFeature
extension process was prematurely halted.ItemValue
represents an item used in the Association Rules model and supports MiningRule
by providing item data in an itemset.ItemValue
.iterations
stopping criterion.KernelFunction
that is used by support vector machines (SVM) mining algorithm.KMeansAlgorithmSettings
is used to specify settings for the KMeans clustering algorithm.KMeansAlgorithmSettings
default settings object.KMeansAlgorithmSettings
object with the maximum number of K-Means iterations between splits set to iterations
, the minimum percentual change in error between K-Means iterations set to error
, and the distance function to be used to train a K-Means set to distanceFunction
.LiftResultElement
contains information on the lift result for a specific quantile of data.ABNModelBuildState
enumerations defined.ABNModelBuildType
enumerations defined.ApplyResultContentOption
enumeration.AttributeType
enumerations defined.AttributeUsage
enumerations defined.BooleanOperator
enumerations defined.ClusteringStoppingCriterion
enumerations defined.ComparisonFunction
enumerations defined.DataFormatType
enumerations defined.DataPreparationStatus
enumerations defined.DataType
enumerations defined.DistanceFunction
enumerations defined.ErrorMetric
enumerations defined.LocationEqualityLevel
enumerations defined.MiningAlgorithm
enumerations defined.MiningFunction
enumerations.MiningStandardType
enumerations defined.MiningTaskState
enumerations defined.MiningTaskType
enumerations defined.Normalization
enumerations defined.PairCombinationsOption
enumerations defined.RuleAnnotationType
enumerations defined.RuleSortCriteria
enumerations defined.SortOrder
enumerations.SparsitySpecification
enumerations defined.UsageAdjustment
enumerations.listDisplayNames
method.listCategories
method.MiningLiftResult
objects stored in the database.MiningLiftResult
objects stored in the database created between the specified start and end times.MiningLiftResult
objects stored in the database derived from the speicfied model, and created between the specified start and end times.ABNModelBuildState
enumerations defined.ABNModelBuildType
enumerations defined.ApplyResultContentOption
.AttributeType
enumerations defined.AttributeUsage
enumerations defined.BooleanOperator
enumerations defined.ClusteringStoppingCriterion
enumerations defined.ComparisonFunction
enumerations defined.DataFormatType
enumerations defined.DataPreparationStatus
enumerations defined.DataType
enumerations defined.DistanceFunction
enumerations defined.ErrorMetric
enumerations defined..LocationEqualityLevel
enumerations defined.MiningAlgorithm
enumerations defined.MiningFunction
.MiningStandardType
enumerations defined.MiningTaskState
enumerations defined.MiningTaskType
enumerations defined.Normalization
enumerations defined.PairCombinationsOption
enumerations defined.RuleAnnotationType
enumerations defined.RuleSortCriteria
enumerations defined.SortOrder
.SparsitySpecification
enumerations defined.UsageAdjustment
.listDisplayNames
method.listCategories
method.PriorProbabilities
instance.LocationAccessData
allows users to specify the location of input and output data tables.LocationAccessData
for the specified location string.LocationAccessData
for the specified object name and schema name.LocationCellAccessData
for the specified row and column in specified schema and table.LocationEqualityLevel
is used to specify the degree of equality between two LocationAccessData
instances.LogicalDataSpecification
(LDS) is used to describe the logical characteristics of the data used in model building, and is composed of a set of mining attributes.LogicalDataSpecification
with the specified array of MiningAttribute
s.Connection
instance.MinimumDescriptionLengthSettings
is used to specify parameters for the Minimum Description Length algorithm supporting attribute importance.MiningAlgorithm
specifies the algorithm used to build a mining model.MiningAlgorithmSettings
is the common superclass of all mining algorithm settings.MiningApplyOutput
specifies the data (columns) to be included in the apply output table created as the result of the apply mining operation.MiningApplyOutput
.MiningApplyResult
represents the result of the apply mining operation.MiningApplyTask
is used for applying a model to a data set to make predictions, classifications, and to provide associated probabilities.MiningAttribute
is a logical concept that describes a domain of data to be used as input to data mining operations.MiningAttribute
instance with the specified name, data type and attribute type.MiningBuildResult
represents the result of the build mining operation.MiningBuildTask
is used for building all mining models supported by ODM.MiningDataTask
is the common superclass for all mining tasks that involve data mining operations e.g, (building models, scoring(apply), testing, cross-validate, lift computation).MiningFunction
specifies the type of mining function to be used to build a mining model.MiningFunctionSettings
(MFS) captures the high level specification input for building a data mining model.MiningLiftResult
contains the result of a lift computation for a classification model.MiningLiftTask
is used to compute the lift based on the specified positive target value and the number of quantiles.MiningModel
is the result of a successful build mining operation.MiningObjectException
is thrown when an invalid mining object is detected, or when an error is detected, other than an invalid argument, that prevents successful completion of a method of a mining object.MiningOperationException
is thrown when an error occurs during the execution of a mining operation.MiningRule
represents a rule as produced from the Association Rules model, the Adaptive Bayes Network model, or the Clustering model.MiningRuleSet
provides methods to support retrieval of rules from the Association Rules model, the Adaptive Bayes Network model, and the Clustering model.MiningTask
is the common superclass for all data mining task classes.MiningTaskException
is thrown when there is a failure during the execution of a mining task.MiningTaskState
is used to represent the states of a mining task.MiningTaskStatus
provides the following details on the state of a tasks execution: MiningTaskState
enumeration State entry timestamp State description A given task may have multiple MiningTaskStatus instances that provide a status history for the task .MiningTaskStatus
instance with the specified MiningTaskState
, state entry time stamp, and description.MiningTaskType
is used to represent the types of a mining task.MiningTestResult
represents the result of mining test operation.ModelExportTask
is used to export ODM mining models to standard format mining model representations.ModelExportTask
object given the MiningStandardType
and the location of the cell (that is, row-column intersection) identified by the column name and rowid for a given schema and table name.ModelImportTask
is used to import standard format mining models to the database.ModelImportTask
object given the MiningStandard
and the location of the cell (that is, row-column intersection) identified by the column name and rowid for a given schema and table name.ModelSeekerClassificationAlgorithmSettings
object by invoking the parent constructor with an argument value that identifies the algorithm as the Model Seeker algorithm.ModelSeekerTask
with information needed to build multiple models.ModelSignature
specifies the input attributes required to apply data using a specific model.NaiveBayesModel
contains the metadata and Bayes statistics from the training run (see class MiningBuildTask
).NaiveBayesSettings
is used to specify settings for the Naive Bayes algorithm.NaiveBayesSettings
instance with the default singletonThreshold
value of 0.01 and pairwiseThreshold
value of 0.001NaiveBayesSettings
instance.NetworkFeature
consists of ConditionalProbabilityExpression
s.NMFAlgorithmSettings
is used to specify settings for the NMF Feature Extraction algorithm.NMFAlgorithmSettings
object with default settings: maximum number of iterations is set to 50 minimum convergence tolerance is set 0.5NMFAlgorithmSettings
object with default settings: maximum number of iterations is set to 50NMFAlgorithmSettings
object with default settings: minimum convergence tolerance is set 0.5NMFAlgorithmSettings
object.NMFModel
is a Java representation of the Non-negative matrix factorization(NMF) model.NonTransactionalDataSpecification
instance instructs the DMS to treat associated data as "non-transactional", that is, the data consists of one record (row) per case.NonTransactionalDataSpecification
(LocationAccessData)NonTransactionalDataSpecification
instance with the specified location access data.Normalization
indicates whether the attribute representation is zScore or minMax.MiningAttribute
, such as keys, that are neither categorical or numerical.MiningAttribute
as numerical, eg. containing values that are continuous or discrete numbersNumericalBin
specifies explicit bin boundaries for a numerical mining attribute.NumericalBin
instance that specifies the bin boudaries for a mining attribute.NumericalBin
instance that specifies the bin boudaries for a mining attribute.NumericalDiscretization
contains the binning details for a numerical attribute.NumericalDiscretization
instance with the specified number of quantiles.NumericalDiscretization
instance with the specified number of quantiles and tail percentage.NumericalDiscretization
instance with the specified array of numerical bin boundaries.OClusterAlgorithmSettings
holds metadata about settings that are required in the O-Cluster algorithm.OClusterAlgorithmSettings
object with the the parameter sensitivity
set to its default value.OClusterAlgorithmSettings
object with the the parameter sensitivity
set to the value of the argument.ODMException
is a common superclass for ODM exceptions.ODMVersion
provides the product and version information of Oracle10i Data Mining Java API.Predicate
is the common superclass for SimplePredicate
, BooleanPredicate
, and CompoundPredicate
.PredicateRuleComponent
consists of a predicate - simple, boolean or compound.MinimumDescriptionLengthSettings
for attribute importance instead.PriorProbabilities
contains prior probabilities corresponding to target values.PriorProbabilities
instance.RecordInstance
represents a single record of data.RegressionFunctionSettings
describes the settings necessary to build a Regression (regression) model by using a Support Vector Machine mining algorithm.RegressionFunctionSettings
object.RegressionFunctionSettings
object.RegressionTestResult
represents the result of the test operation for a RegressionTestResult model.RegressionTestTask
is used for testing an Regression (regression) model on test data.ModelSeekerResult
object of the given name.AssociationRulesModel
with the specified name persisted in the data mining server.AttributeImportanceModel
with the specified name persisted in the data mining server given a connection to the data mining server and the model name.ClusteringModel
and populates the complex model object for reading by a user program.NMFModel
and populates the complex model object for reading by a user program.SupervisedModel
with the specified name persisted in the data mining server given a connection to the data mining server and the model name.SupervisedModel
with the specified name persisted in the data mining server given a database connection to the data mining server and the model name.ClassificationTestResult
object with the specified resultName
from the database.MiningLiftResult
object with the specified resultName
from the database.ModelSeekerResult
object of the given name.MiningFunctionSettings
with the specified name persisted in the data mining server given a database connection and the function settings name.MiningFunctionSettings
with the specified name persisted in the data mining server given a connection to the data mining server and the function settings name.MiningLiftTask
object from the database.MiningApplyOutput
with the specified name persisted in the data mining server given a database connection and the name of the MiningApplyOutput
.RuleAnnotation
supports extensible annotations on a MiningRule
.RuleAnnotation
with a RuleAnnoationType
and its value.RuleAnnotationType
indicates an annotation type to be contained in an instance of MiningRule
.RuleComponent
can be used as an antecedent or consequent of a MiningRule
instance.RuleComponent
with a support value and an itemset.RuleSortCriteria
provides options for sorting mining rules retrieved from an Association Rules model.LocationAcessData
instances are equal if the schema values are exact matches.accuracy
is not used.ClusteringModel
.setMaxPredictors
and setNaiveBayesNumPredictors
.ClusteringModel
.DataPreparationStatus
enum value for the mining attribute.AttributeUsage
enum value for the mining attribute.SignatureAttribute
is used to represent a logical attribute that was used for model building and is required for scoring data using a specific model.SimplePredicate
consists of a single comparison between a mining attribute value and a set of constants.SortOrder
provides options for ordering of objects.SparsitySpecification
indicates whether the attribute representation is dense or sparse.SupervisedFunctionSettings
describes settings for supervised learning functions.accuracy
is not used. Use other constructor without accuracy parameter.accuracy
is not used. Use other constructor without accuracy parameter.SupervisedFunctionSettings
object.SupervisedModel
serves as a common superclass for supervised learning models.SupportVectorMachineModel
contains the metadata and tables from a model build.SupportVectorMachineSettings
is the common superclass of all Support Vector Machine (SVM) mining algorithm settings.SVMClassificationSettings
is used to specify settings for the Support Vector Machine (SVM) mining algorithm to build a classification mining model.SVMClassificationSettings
object with default settings: - normalization is set to minMax - kernelFunction is set to linear - tolerance float value is set to 0.001 - complexityFactor value is set to 1 - kernelCacheSize value is set to 50,000,000SVMClassificationSettings
object.SVMRegressionSettings
is used to specify settings for the Support Vector Machine (SVM) mining algorithm to build a regression mining model.SVMRegressionSettings
object with default settings: - default normalization is set to minMax - default kernelFunction is set to linear - default tolerance value is set to 0.001 - default complexityFactor value is set to 1 - default kernelCacheSize value is set to 50,000,000 - default epsilon value is set to 0.1SVMRegressionSettings
object.TargetItem
represents a target value and its probability and count.TaskStatusHistory
is an ordered list iterator of task execution statuses.MiningTestTask
to perform the test mining operation.MiningAttribute
, as an Oracle Text type.Category
instance.CategoryMatrix
instance.LocationAccessData
object.TransactionalDataSpecification
instructs the DMS to treat associated data as transactional, i.e., a given case is stored in multiple records in a table with column roles: sequenceID, attributeName, and value.TransactionalDataSpecification(seqId, attrName, value, LocationAccessData)
TransactionalDataSpecification
with the specified identifier attributes.Transformation
is used to prepare input data for use in data mining operations in ODM.TreeNode
characterizes a partition of a multidimensional dataset.UsageAdjustment
specifies how the usage of a set of mining attributes is to be changed in association with Attribute Importance results.CostMatrix.validate()
methodTransactionalDataSpecification
.NMFAlgorithmSettings
object.NaiveBayesSettings
.
|
| |||||||||
PREV NEXT | FRAMES NO FRAMES |