|
Oracle Data Mining Java API Reference 10g Release 1 (10.1) B12276-01 | |||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Object
|
+--oracle.dmt.odm.MiningObject
|
+--oracle.dmt.odm.LocatableObject
|
+--oracle.dmt.odm.settings.function.MiningFunctionSettings
|
+--oracle.dmt.odm.settings.function.SupervisedFunctionSettings
|
+--oracle.dmt.odm.settings.function.ClassificationFunctionSettings
An instance of ClassificationFunctionSettings describes the settings necessary to build a classification model.
Given a pre-determined set of class values in a target attribute, classification analyzes a training dataset to determine to which class a given data record belongs. Classification has been used in customer segmentation, business modeling, and credit analysis.
In ODM 9.2.0, two classification algorithms are supported: Naive Bayes and Adaptive Bayes Network (decision tree). If no algorithm is specified, the Naive Bayes algorithm is chosen by default.
AdaptiveBayesNetworkSettings, NaiveBayesSettings, Serialized Form| Constructor Summary | |
ClassificationFunctionSettings(float accuracy, LogicalDataSpecification lds, DataUsageSpecification dus)Deprecated. As of ODM 9.2.0. The parameter accuracy is not supported. Use other constructor without accuracy parameter. | |
ClassificationFunctionSettings(float accuracy, LogicalDataSpecification lds, DataUsageSpecification dus, MiningAlgorithmSettings algorithm)Deprecated. As of ODM 9.2.0. The parameter accuracy is not supported. Use other constructor without accuracy parameter. | |
ClassificationFunctionSettings(LogicalDataSpecification lds, DataUsageSpecification dus)Creates an instance of ClassificationFunctionSettings object. | |
ClassificationFunctionSettings(LogicalDataSpecification lds, DataUsageSpecification dus, MiningAlgorithmSettings algorithm)Creates an instance of ClassificationFunctionSettings object. | |
| Method Summary | |
static ClassificationFunctionSettings |
create(Connection dmsConn, MiningAlgorithmSettings algorithm, PhysicalDataSpecification pdsDataSpec, java.lang.String sTargetAttrName, AttributeType atTargetAttributeType, DataPreparationStatus dpStatus)Creates an instance of ClassificationFunctionSettings from the specified parameters. |
CategoryMatrix |
getCostMatrix()Returns the cost matrix set in this mining function settings. |
PriorProbabilities |
getPriors()Returns the prior probabilities of the input data set in this function settings. |
MiningAttribute |
getTargetAttribute()Returns the target attribute set in this functional settings. |
void |
setCostMatrix(CategoryMatrix costMatrix)Sets the cost matrix to be used for test operation. |
void |
setPriors(PriorProbabilities prior)Sets the prior probabilities of the input data. |
void |
validate()Validates the contents of this mining function settings. |
| Methods inherited from class oracle.dmt.odm.settings.function.SupervisedFunctionSettings |
getDesiredAccuracy, getPredictorAttributes, getTargetAttributes, getUnpreparedPredictorAttributes, setDesiredAccuracy |
| Methods inherited from class java.lang.Object |
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Constructor Detail |
public ClassificationFunctionSettings(float accuracy,
LogicalDataSpecification lds,
DataUsageSpecification dus,
MiningAlgorithmSettings algorithm)
throws InvalidArgumentException
accuracy is not supported. Use other constructor without accuracy parameter.ClassificationFunctionSettings object.accuracy - The desired minimum accuracy of the classification model to be builtlds - An instance of LogicalDataSpecification that specifies the logical representation of the input data used for model buildingdus - An instance of DataUsageSpecification that defines how the logical data is to be used for model buildingalgorithm - An instance of MiningAlgorithmSettings that specifies a classification algorithm to be used for model building. If null, a default algorithm is chosen by the DMS.InvalidArgumentException -
lds is null, oraccuracy is invalid (less than 0 or greater than 1).
public ClassificationFunctionSettings(LogicalDataSpecification lds,
DataUsageSpecification dus,
MiningAlgorithmSettings algorithm)
throws InvalidArgumentException
ClassificationFunctionSettings object.lds - An instance of LogicalDataSpecification that specifies the logical representation of the input data used for model buildingdus - An instance of DataUsageSpecification that defines how the logical data is to be used for model buildingalgorithm - An instance of MiningAlgorithmSettings that specifies a classification algorithm to be used for model building. If null, a default algorithm is chosen by the DMS.InvalidArgumentException - when lds is null.
public ClassificationFunctionSettings(float accuracy,
LogicalDataSpecification lds,
DataUsageSpecification dus)
throws InvalidArgumentException
accuracy is not supported. Use other constructor without accuracy parameter.ClassificationFunctionSettings object. A default algorithm settings is selected by the DMS, and applied to model building.accuracy - The desired minimum accuracy of the classification model to be builtlds - An instance of LogicalDataSpecification that specifies the logical representation of the input data used for model buildingdus - An instance of DataUsageSpecification that defines how the logical data is to be used for model buildingInvalidArgumentException -
lds is null, oraccuracy is invalid (less than 0 or greater than 1).
public ClassificationFunctionSettings(LogicalDataSpecification lds,
DataUsageSpecification dus)
throws InvalidArgumentException
ClassificationFunctionSettings object. A default algorithm settings is selected by the DMS, and applied to model building.lds - An instance of LogicalDataSpecification that specifies the logical representation of the input data used for model buildingdus - An instance of DataUsageSpecification that defines how the logical data is to be used for model buildingInvalidArgumentException -
lds is null, oraccuracy is invalid (less than 0 or greater than 1).| Method Detail |
public MiningAttribute getTargetAttribute()
throws MiningObjectException
MiningObjectExceptionAttributeUsage
public void validate()
throws MiningObjectException
MiningObjectException - when this mining function settings is invalid
public void setPriors(PriorProbabilities prior)
throws InvalidArgumentException
prior - The prior probabilities to be setInvalidArgumentException - when prior is null.PriorProbabilitiespublic PriorProbabilities getPriors()
PriorProbabilities
public void setCostMatrix(CategoryMatrix costMatrix)
throws InvalidArgumentException
costMatrix - - The cost matrix to be setInvalidArgumentException - when costMatrix is null.CategoryMatrixpublic CategoryMatrix getCostMatrix()
CategoryMatrix
public static ClassificationFunctionSettings create(Connection dmsConn,
MiningAlgorithmSettings algorithm,
PhysicalDataSpecification pdsDataSpec,
java.lang.String sTargetAttrName,
AttributeType atTargetAttributeType,
DataPreparationStatus dpStatus)
throws java.sql.SQLException,
InvalidArgumentException,
MiningObjectException,
ODMException
ClassificationFunctionSettings from the specified parameters.dmsConn - A connection to the data mining serveralgorithm - An instance of MiningAlgorithmSettingspdsDataSpec - An instance of PhysicalDataSpecification that specifies the input datasTargetAttrName - The name of the target attributeatTargetAttributeType - The type of the target attribute. Only string or integer type is allowed.dpStatus - An instance of DataPreparationStatus that indicates whether the data is discretized.ClassificationFunctionSettings - A created instance of classification function settingsInvalidArgumentException -
dmsConn is null,pdsDataSpec is null,sTargetAttrName is null,atTargetAttributeType is null, oratTargetAttributeType is neither string nor integer.ODMException - when sTargetAttrName is empty or exceeds 30 bytes in lengthjava.sql.SQLException - when an error occurs during access to the input dataMiningObjectException - inherited exception
|
| |||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||