Oracle Data Mining Java API Reference
10g Release 1 (10.1)

B12276-01

oracle.dmt.odm.settings.function
Class RegressionFunctionSettings

java.lang.Object
  |
  +--oracle.dmt.odm.MiningObject
        |
        +--oracle.dmt.odm.LocatableObject
              |
              +--oracle.dmt.odm.settings.function.MiningFunctionSettings
                    |
                    +--oracle.dmt.odm.settings.function.SupervisedFunctionSettings
                          |
                          +--oracle.dmt.odm.settings.function.RegressionFunctionSettings
All Implemented Interfaces:
java.io.Serializable

public class RegressionFunctionSettings
extends SupervisedFunctionSettings

An instance of RegressionFunctionSettings describes the settings necessary to build a Regression (regression) model by using a Support Vector Machine mining algorithm. RegressionFunctionSettings inherits from SupervisedFunctionSettings. It contains an error metric. The specified value of an error is described by an enum to indicate that the metric is used by test to report the model prediction error rate.

Since:
10.0.0
See Also:
Serialized Form

Constructor Summary
RegressionFunctionSettings(LogicalDataSpecification lds, DataUsageSpecification dus)
          Creates an instance of RegressionFunctionSettings object.
RegressionFunctionSettings(LogicalDataSpecification lds, DataUsageSpecification dus, MiningAlgorithmSettings algorithm)
          Creates an instance of RegressionFunctionSettings object.

 

Method Summary
static RegressionFunctionSettings create(Connection dmsConn, MiningAlgorithmSettings algorithm, PhysicalDataSpecification pdsDataSpec, java.lang.String sTargetAttrName, DataPreparationStatus dpStatus)
          Creates an instance of RegressionFunctionSettings from the specified parameters.
 ErrorMetric getErrorMetric()
          Returns the value of errorMetric.
 MiningAttribute getTargetAttribute()
          Returns the target attribute set in this functional settings.
 void setErrorMetric(ErrorMetric errorMetric)
          Sets the error metric of the input data.
 void validate()
          Validates the contents of this mining function settings.

 

Methods inherited from class oracle.dmt.odm.settings.function.SupervisedFunctionSettings
getDesiredAccuracy, getPredictorAttributes, getTargetAttributes, getUnpreparedPredictorAttributes, setDesiredAccuracy

 

Methods inherited from class oracle.dmt.odm.settings.function.MiningFunctionSettings
activateAll, adjustAttributesType, adjustAttributeUsage, adjustAttributeUsage, adjustDataPreparationStatus, adjustSparsitySpecification, getDataUsageSpecification, getLogicalDataSpecification, getMiningAlgorithmName, getMiningAlgorithmSettings, getMiningAttributes, getMiningFunction, getName, getSettingsID, getSupplementalAttributes, getValidateBeforeStore, listContents, listContents, listContents, listContents, remove, rename, restore, restore, restorePastVersion, restorePastVersion, setDataUsageSpecification, setLogicalDataSpecification, setMiningAlgorithmName, setMiningAlgorithmSettings, setMiningFunction, setValidateBeforeStore, store

 

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

 

Constructor Detail

RegressionFunctionSettings

public RegressionFunctionSettings(LogicalDataSpecification lds,
DataUsageSpecification dus,
MiningAlgorithmSettings algorithm)
                           throws InvalidArgumentException
Creates an instance of RegressionFunctionSettings object.
Parameters:
lds - An instance of LogicalDataSpecification that specifies the logical representation of the input data used for model building
dus - An instance of DataUsageSpecification that defines how the logical data is to be used for model building
algorithm - An instance of MiningAlgorithmSettings that specifies a classification algorithm to be used for model building. If null, a default algorithm is chosen by the DMS.
Throws:
InvalidArgumentException -

RegressionFunctionSettings

public RegressionFunctionSettings(LogicalDataSpecification lds,
DataUsageSpecification dus)
                           throws InvalidArgumentException
Creates an instance of RegressionFunctionSettings object. A default algorithm settings is selected by the DMS, and applied to model building.
Parameters:
lds - An instance of LogicalDataSpecification that specifies the logical representation of the input data used for model building
dus - An instance of DataUsageSpecification that defines how the logical data is to be used for model building
Throws:
InvalidArgumentException -
Method Detail

validate

public void validate()
              throws MiningObjectException
Validates the contents of this mining function settings.
Throws:
MiningObjectException - when this mining function settings is invalid

create

public static RegressionFunctionSettings create(Connection dmsConn,
MiningAlgorithmSettings algorithm,
PhysicalDataSpecification pdsDataSpec,
                                                java.lang.String sTargetAttrName,
DataPreparationStatus dpStatus)
                                                                          throws java.sql.SQLException,
InvalidArgumentException,
MiningObjectException,
ODMException
Creates an instance of RegressionFunctionSettings from the specified parameters.
Parameters:
dmsConn - A connection to the data mining server
algorithm - An instance of MiningAlgorithmSettings
pdsDataSpec - An instance of PhysicalDataSpecification that specifies the input data
sTargetAttrName - The name of the target attribute
dpStatus - An instance of DataPreparationStatus that indicates whether the data is discretized.
Returns:
RegressionFunctionSettings - A created instance of Regression function settings
Throws:
InvalidArgumentException - thrown when
  • if dmsConn is null,
  • if pdsDataSpec is null,
  • if sTargetAttrName is null,
  • if atTargetAttributeType is neither string nor integer.
java.sql.SQLException - when an error occurs during access to the input data.
MiningObjectException - inherited exception.
ODMException

setErrorMetric

public void setErrorMetric(ErrorMetric errorMetric)
                    throws InvalidArgumentException
Sets the error metric of the input data.
Throws:
InvalidArgumentException - when errorMetric is null.
See Also:
ErrorMetric

getErrorMetric

public ErrorMetric getErrorMetric()
Returns the value of errorMetric.
Returns:
the value of the error metric

getTargetAttribute

public MiningAttribute getTargetAttribute()
                                                       throws MiningObjectException
Returns the target attribute set in this functional settings.
Returns:
The target mining attribute
Throws:
MiningObjectException - when the target attributes are nissing.
See Also:
AttributeUsage

Copyright © 2003 Oracle Corporation. All Rights Reserved.