oracle.dmt.odm.settings.algorithm
Class SVMClassificationSettings
java.lang.Object
|
+--oracle.dmt.odm.MiningObject
|
+--oracle.dmt.odm.settings.algorithm.MiningAlgorithmSettings
|
+--oracle.dmt.odm.settings.algorithm.SupportVectorMachineSettings
|
+--oracle.dmt.odm.settings.algorithm.SVMClassificationSettings
- All Implemented Interfaces:
- java.io.Serializable
- public class SVMClassificationSettings
- extends SupportVectorMachineSettings
An instance of SVMClassificationSettings
is used to specify settings for the Support Vector Machine (SVM) mining algorithm to build a classification mining model. Specifies parameters specific to classification using SVM.
- Since:
- 10.1.0
- See Also:
- Serialized Form
Constructor Summary |
SVMClassificationSettings()
Creates an instance of SVMClassificationSettings object with default settings: - normalization is set to minMax - kernelFunction is set to linear - tolerance float value is set to 0.001 - complexityFactor value is set to 1 - kernelCacheSize value is set to 50,000,000 |
SVMClassificationSettings(Normalization normalization, KernelFunction kernelFunction, float tolerance, int kernelCacheSize, java.lang.Float standardDeviation, java.lang.Float complexityFactor)
Creates an instance of SVMClassificationSettings object. |
Methods inherited from class oracle.dmt.odm.settings.algorithm.SupportVectorMachineSettings |
getComplexityFactor, getKernelCacheSize, getKernelFunction, getNormalization, getStandardDeviation, getTolerance, setComplexityFactor, setKernelCacheSize, setKernelFunction, setNormalization, setStandardDeviation, setTolerance |
Methods inherited from class java.lang.Object |
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
SVMClassificationSettings
public SVMClassificationSettings(Normalization normalization,
KernelFunction kernelFunction,
float tolerance,
int kernelCacheSize,
java.lang.Float standardDeviation,
java.lang.Float complexityFactor)
throws InvalidArgumentException
- Creates an instance of
SVMClassificationSettings
object.
- Parameters:
normalization
- value of normalization
kernelFunction
- value of kernel function
tolerance
- value of tolerance
standardDeviation
- the standard deviation of the Gaussian kernel this field is required if kernelFunction is Gaussian. The value will be computed if null, and the computed value can be obtained from a restored model.
complexityFactor
- the parameter trading off complexity for prediction loss. The value will be computed if null, and the computed value can be obtained from a restored model.
kernelCacheSize
- the parameter of kernel function cache size
- Throws:
InvalidArgumentException
- - normalization is null
- kernelFunction is null
- tolerance <=0
- standardDeviation <=0 and standardDeviation !=null
- complexityFactor <=0 and complexityFactor !=null
InvalidArgumentException
SVMClassificationSettings
public SVMClassificationSettings()
- Creates an instance of
SVMClassificationSettings
object with default settings: - normalization is set to minMax - kernelFunction is set to linear - tolerance float value is set to 0.001 - complexityFactor value is set to 1 - kernelCacheSize value is set to 50,000,000
- Throws:
InvalidArgumentException
- - kernelFunction is null