oracle.dmt.odm.settings.algorithm
Class SVMRegressionSettings
java.lang.Object
|
+--oracle.dmt.odm.MiningObject
|
+--oracle.dmt.odm.settings.algorithm.MiningAlgorithmSettings
|
+--oracle.dmt.odm.settings.algorithm.SupportVectorMachineSettings
|
+--oracle.dmt.odm.settings.algorithm.SVMRegressionSettings
- All Implemented Interfaces:
- java.io.Serializable
- public class SVMRegressionSettings
- extends SupportVectorMachineSettings
An instance of SVMRegressionSettings
is used to specify settings for the Support Vector Machine (SVM) mining algorithm to build a regression mining model. Specifies parameters specific to regression using SVM.
- Since:
- 10.1.0
- See Also:
- Serialized Form
Constructor Summary |
SVMRegressionSettings()
Creates an instance of SVMRegressionSettings object with default settings: - default normalization is set to minMax - default kernelFunction is set to linear - default tolerance value is set to 0.001 - default complexityFactor value is set to 1 - default kernelCacheSize value is set to 50,000,000 - default epsilon value is set to 0.1 |
SVMRegressionSettings(Normalization normalization, KernelFunction kernelFunction, float tolerance, java.lang.Float standardDeviation, java.lang.Float complexityFactor, int kernelCacheSize, java.lang.Float epsilon)
Creates an instance of SVMRegressionSettings object. |
Method Summary |
java.lang.Float |
getEpsilon()
Returns the interval of the allowed error in epsilon-insensitive regression. |
void |
setEpsilon(java.lang.Float epsilon)
Sets the interval of the allowed error in epsilon-insensitive regression. |
Methods inherited from class oracle.dmt.odm.settings.algorithm.SupportVectorMachineSettings |
getComplexityFactor, getKernelCacheSize, getKernelFunction, getNormalization, getStandardDeviation, getTolerance, setComplexityFactor, setKernelCacheSize, setKernelFunction, setNormalization, setStandardDeviation, setTolerance |
Methods inherited from class java.lang.Object |
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
SVMRegressionSettings
public SVMRegressionSettings(Normalization normalization,
KernelFunction kernelFunction,
float tolerance,
java.lang.Float standardDeviation,
java.lang.Float complexityFactor,
int kernelCacheSize,
java.lang.Float epsilon)
throws InvalidArgumentException
- Creates an instance of
SVMRegressionSettings
object.
- Parameters:
normalization
- value of normalization
kernelFunction
- value of kernel function
tolerance
- value of tolerance
standardDeviation
- the standard deviation of the Gaussian kernel this field is required if kernelFunction is Gaussian. The value will be computed if null, and the computed value can be obtained from a restored model.
complexityFactor
- the parameter trading off complexity for prediction loss. The value will be computed if null, and the computed value can be obtained from a restored model.
kernelCacheSize
- the parameter of kernel function cache size
epsilon
- value of the interval of the allowed error in epsilon-insensitive regression
- Throws:
InvalidArgumentException
- - normalization is null
- kernelFunction is null
- tolerance <=0
- standardDeviation <=0 and standardDeviation !=null
- complexityFactor <=0 and complexityFactor !=null
- epsilon <=0
InvalidArgumentException
SVMRegressionSettings
public SVMRegressionSettings()
- Creates an instance of
SVMRegressionSettings
object with default settings: - default normalization is set to minMax - default kernelFunction is set to linear - default tolerance value is set to 0.001 - default complexityFactor value is set to 1 - default kernelCacheSize value is set to 50,000,000 - default epsilon value is set to 0.1
- Throws:
InvalidArgumentException
- - kernelFunction is null
setEpsilon
public void setEpsilon(java.lang.Float epsilon)
throws InvalidArgumentException
- Sets the interval of the allowed error in epsilon-insensitive regression.
-
- Parameters:
epsilon
-
- Throws:
InvalidArgumentException
- is thrown
- when epsilon <= 0
InvalidArgumentException
getEpsilon
public java.lang.Float getEpsilon()
- Returns the interval of the allowed error in epsilon-insensitive regression.
-
- Returns:
- m_epsilon